
DRAFT

Preface
Purpose

This text presents a broad reformulation of how software-based products are realized. 
At its core, this begins with a reframing of how singular (one-size-fits-all or one-of-a-
kind) products are developed, based on a reconsideration of the elements of 
conventional approaches. It then extends this modified approach as the basis for a 
systematic approach for building sets of similar products. This portrays a disciplined 
industrial approach that envisions how complex high-quality software-based products 
can be engineered and manufactured at significantly reduced cost while being 
customized to fit diverse and changing needs. The motivating vision is the ability to 
mass produce and evolve customized software-based products.

Objective

This work traces back to long-ago observations that similar software capabilities were 
repeatedly being independently reproduced. At the level of software components, this 
is less true today, but products as a whole are still largely developed as “unique” 
solutions, whether for a single customer or for a broader market, to perceived 
opportunities for automation. Furthermore, current approaches result in products that 
become increasingly difficult and costly to modify as needs change. The concept 
underlying a better approach is that similar problems are amenable to similar solutions; 
this provides the basis for building customer- or market-targeted products that are both 
customized to fit specific needs and more easily modified as those needs change over 
time.

Context

When software first came into use with the emergence of computers in the 1950’s, its 
capabilities were a limited and narrowly focused contribution to targeted operational 
endeavors. Software was seen as a simple means of automating tedious clerical and 

ghc i 2/20/25



DRAFT

computational tasks and enabling more responsive monitoring and control of simple 
mechanical devices and processes.

Today, software is an essential and pervasive enabler of endeavors in every facet of 
business, government, and daily life, from controlling industrial, energy, aerospace, and 
military systems and devices to enabling aspects of agriculture, finance, healthcare, 
education, entertainment, communications, and transportation. Even such categories 
are an insufficient characterization of the role of software in that it also controls the 
underlying interconnecting framework that increasingly ties all of these together into a 
functioning holistic ecosystem.

Despite this essential role, continued use of conventional development practices results 
in software that is overly complex, costly, flawed, and difficult to change. The 
underlying weakness in this approach is that it was conceived on the premise that each 
product is unique and unprecedented, requiring trial-and-error development from 
essentially first principles. It becomes a constraint and limiter on the ability of 
individuals and enterprises to be effective and efficient and adapt to changing needs.

Software practices have improved enormously over the last 60 years, through numerous 
attempts to bring greater discipline and predictability to software development and 
automation of routine tasks. These efforts have resulted in improvements in 
productivity and product quality but none have produced a fundamental advance 
given the prevailing narrow mindset of how software development should work.

Content

For a variety of reasons, software providers are wary of changes in development 
practices. Change brings uncertainty and a perception of increased risk of inferior 
results verses following conventional practices. However, the inherent flaws in a 
conventional approach also increase cost and limit a product’s value over its potential 
useful life. A time will come when the inherent costs and risks of the conventional 
approach will yield to a more disciplined, more flexible manufacturing-based approach. 
An alternative approach, based on the related concepts of program families and mass 

ghc ii 2/20/25



DRAFT

customization properly applied, addresses many of the issues that plague the 
conventional approach.

The conventional view of a software product is as a text that is repeatedly modified to 
express a changing understanding of a problem and its corresponding solution. An 
alternative view is based on the idea that every realizable product is an instance of a 
universal natural set of products. This set is further partitioned into a hierarchy of 
subsets based on a concept of behavioral similarity. Each such subset is characterized 
sufficiently to determine whether a needed product is a proper member of that set. 
When the need for a product is first considered, it is not known exactly which instance 
of the universal set is to be built. As a product is developed and revised over its useful 
life, every interim realization of that product can be seen as being a different instance. 
Similarly, when a product is later revised to meet changed needs, it becomes yet another 
instance of that set as well.

This alternative approach arises from an engineering conception of a product as a 
holistic realization of envisioned behavior rather than a reductionist focus on the 
devising of elements that in some combination happen to produce that behavior. This 
text is not prescriptive as to the detailed practices of software development but instead 
provides a descriptive formulation of an approach based on a theory and concepts of 
software development as a coherent discipline.

The objective here is to coherently describe the overall concepts for the engineering and 
manufacture of software-based products built upon a familiar base of known (but 
selectively revised) basic practices. This text relies on but does not discuss specific 
practices related to programming, design or testing techniques, tools, nor the specifics 
of software methods (except as needed to provide guidance on certain unconventional 
aspects of the proposed methodology).

This text is organized as follows:

ghc iii 2/20/25



DRAFT

The Foundations and Future of Software Production

Defines a vision toward reconceiving the development of software-based products as an 
engineering and manufacturing discipline, leading to significant improvements in 
productivity and product quality

Basic Software Product Engineering

Takes a different look at building a singular but changing software product

Domain-specific Engineering

Explores the concept of a product family as the basis for a systematic approach to the 
engineering of an envisioned set of similar products, enabling the manufacture of 
customized instances as needed

Automating Software Production

Describes a progression of formulations for automating mechanical aspects of the 
engineering and manufacture of software-based products

Anticipating Change

Surveys emerging concepts and techniques that could contribute to attainment of the 
proposed vision, its further evolution, or even a future reconception

Audience

This text is a systemic guide to a unified industrial approach to producing software-
based products and systems. It provides both organizational, management, and 
technical perspectives on the adoption and practice of this approach within an 
enterprise. It is not a guide to the various detailed practices of software development, 
which are fully explored in a vast array of other publications and continue to evolve. 
Rather, it assumes a moderate degree of familiarity with the practices involved in a 
conventional approach to building software, preferably based on having actually 
developed and modified software and having experienced the difficulties of doing so. 
An understanding of the challenges of organizing and managing a software project or 
enterprise would also be beneficial. Lightly adapted forms of conventional practices are 
a basic foundation for this approach but these are described only sufficiently to explain 

ghc iv 2/20/25



DRAFT

how they fit within the approach, particularly focusing on any differences from 
conventional uses. Without some reasonable familiarity with these practices, it can be 
difficult for the reader to appreciate the described alternative or to envision how a 
complete practice of this approach is achieved.

Acknowledgements

The overall concept presented here and many of its detailed elements have been 
developed and discussed in numerous papers and presentations over the last 40 years. 
A variety of enterprises, in government and industry, have beneficially applied tailored 
versions of this approach that have enabled them to be more responsive to their 
business and customer needs. This text is an attempt to tie all aspects of the approach 
together into a coherent whole, elaborating and refining several beyond past 
descriptions.

This text is the culmination of my long experience during the emergence of the theory 
and practice of software engineering. In particular, this has included experience in the 
70’s on a variety of commercial development efforts, projects in the 80’s and early 90’s at 
Software Architecture and Engineering (Software A&E) and the Software Productivity 
Consortium (SPC), working in the late 90’s as an independent consultant to government 
and industry in the U.S. and Europe, and working in the 00’s on the staff of the 
Carnegie Mellon Software Engineering Institute (CMU/SEI) in support of improving 
software engineering and acquisition practices of U.S. government agencies. In every 
case, I have benefited from the knowledge and expertise of numerous co-workers 
whose contributions to the substance of this text are too extensive to list in detail but 
were critical to the ultimate result.

Of greatest value to this work were

• Dr. David Parnas and other contributors to the Naval Research Laboratory/
Software Cost Reduction project (NRL/SCR) [1981-82]

• Andrew Ferrentino and my co-workers on the Spectrum project at Software A&E 
(notably, Richard McCabe, Dr. Tom Shields, and Vicki Florian) [1981-88]

ghc v 2/20/25



DRAFT

• Judd Neale, Dr. Art Pyster, and my co-workers and customers of the Synthesis 
project at the Software Producibility Consortium (SPC) (notably, Richard 
McCabe, Dr. David Weiss, and Dr. Stuart Faulk) [1989-96]

• Participants in the Thomson-CSF (Thales) corporate reuse initiative and 
supporting European Software Institute (notably, Pascal Maheut) [1996-98]

• Staffs of the CMU/Software Engineering Institute (SEI) Software Product Line 
Acquisition initiative [1998-2002] and Acquisition Support Program and 
associated customer programs (notably, Brian Gallagher, Terry Dailey, and Alfred 
Schenker) [2002-12, 2015-19]

• Matthew Campbell (of Hypar) and James Kirby (of SPC and the US Naval 
Research Laboratory), whose many helpful perspectives and insights have 
greatly improved ideas presented in this text

In addition to these primary influences, there have been numerous other 
communications on a wide variety of topics that have influenced my views. In cases of 
specific significance, particular publications are cited herein. I fail to cite many others 
that have been less of an influence on me personally or are outside the scope of this 
work (or that I have simply missed: the relevant literature is vast and growing). The 
contributions of all are sincerely appreciated, beyond any overt acknowledgement.

ghc vi 2/20/25


