DRAFT

2.4 Product Requirements

The product requirements model specifies the behavior that a product is expected to
exhibit, within a specified operational context.! This model is intended to establish a
shared developer understanding of a problem-solution that is a consistent elaboration
of customer needs as specified in the product delivery model. This model is augmented

with a specification of expected product evolution over its envisioned useful life.

The product’s behavior is defined in terms of its interactions with entities specified in
the product environment model that characterizes its operational environment. A
product references entities both as sources of information and as agents for initiating

actions that actualize the product’s behavior within the environment.

Customer needs, as an expression of customer criteria for product acceptance, should be
viewed as an under-constrained specification of the envisioned product in that many
different products could be realized that would satisfy such criteria. Based on the
flexibility that this provides for the developer to apply engineering judgement in
identifying, exploring, and resolving uncertainties, ambiguities, alternatives, and
tradeoffs, the product requirements model is meant to be an over-constrained
specification, consistent with the customer needs specification but characterizing the

observable behavior of a particular concretely-realized product.

During development, the requirements model is an evolving “build-to” specification of
the product, aiming to define all aspects of the observable behavior that the product is
meant to exhibit. Changes in developer understanding of the problem, solution
feasibility, quality tradeoffs, or constraints can lead to changes in the customer needs
model. Similarly changes in the customer needs model may lead to changes in the
requirements model. Upon completion and deployment of the realized product into
operational use, the requirements model defines the correct “as-built” behavior of the
product. The evolution of a product is viewed in terms of the aspects of its observable

behavior that may change over time.

1S. R. Faulk, “Understanding Software Requirements”, 2011. < https:/ / classes.cs.uoregon.edu/17W/
cis422 /readings/Faulk_SoftwareRequirements.pdf >

ghc 1 6/27/25


https://classes.cs.uoregon.edu/17W/cis422/readings/Faulk_SoftwareRequirements.pdf
https://classes.cs.uoregon.edu/17W/cis422/readings/Faulk_SoftwareRequirements.pdf

DRAFT

A developer familiar with the customer’s subject matter, such as from having worked
previously in building similar or related products, is best prepared to formulate
requirements that align with the customer’s actual needs. A developer having such
familiarity will require less time to understand the customer’s perspective as expressed
in customer needs—use of specialized terminology, the purpose and needed capabilities
of the envisioned product, and how that purpose is being addressed currently. This
familiarity will give the developer credibility in suggesting changes to achieve product
feasibility, while allowing the customer to influence the tradeoff between needs and
timely product availability. This credibility will be enhanced if the developer recognizes
how differences in customer circumstances can warrant differing solutions. This effort
should be supported through active customer participation during development (or as

needed for a simple market, with program marketing as a customer proxy).
This model specifies the product from 4 perspectives:

e Concept — a concise description of the product’s purpose, in providing

capabilities that support customer needs and objectives

e Behavior — a specification for the actions that the product initiates through

interactions with entities in its environment to induce effects on the ecosystem

* Quality — a characterization of the degree to which the product is expected to

exhibit specified behavioral qualities

e Constraints — a characterization of extrinsic factors that limit the product’s

realization

Product Concept

The product concept element is the product “vision” from a developer perspective. It
concisely specifies, for a realization-independent shared understanding by developers,
the purpose of the product from a customer perspective. This includes, in conjunction
with the product environment model, the nature of the operational context in which it is
used, the type of information that it manages, and the capabilities that it provides

within the customer enterprise.

ghc 2 6/27/25



DRAFT

This element is meant to suffice in describing any realizable product that would satisfy
a customer’s current and, with anticipated changes, likely future needs. This element is
augmented with definitions of key terminology and references to materials that further

explain the nature of the problem-solution space that it addresses.

Product Behavior

The product behavior element specifies how the product interacts with accessible
entities to monitor relevant information and effect behavior within its operational
environment. The product environment model specifies the entities that are accessible to
the product and services associated with each entity as appropriate to its type (edge

device, user role, or aggregate /system).

Product behavior is determined based on entity-reported and product-derived data. An
entity may have the means to conditionally share relevant ecosystem content with the
product: as changes in that content are detected, on a periodic schedule, or upon request
by the product. Provided information may have associated metadata such as when and

on what basis its value has been determined.

[This section provides a broad characterization of the expected content of a behavior
specification without imposing a specific formulation as would be determined by a

particular requirements method2.]

Product behavior is expressed as a set of activities. Each activity is either composite or
entity-specific. Each activity has associated activation criteria (to become enabled); it
may have continuation criteria (for repetition while enabled) and termination criteria (to
become disabled). It may have an associated follow-up/continuation action if needed

(e.g., acting on success or failure of the action).

A composite activity provides for the coordinated management of logically related
activities (e.g., defining a “dialog” or result-dependent action such as acting on an
interrupted or failed request, disseminating data among related activities, or initiating

dependent behavior). Composition may specify conditional initiation of multiple

2 As one example, see the “behavioral model” content in S. Faulk, et al, Consortium Requirement
Engineering Guidebook (SPC-92060-CMC), Dec 1993. < https:/ / apps.dtic.mil /sti/ pdfs/ ADA274691.pdf >

ghc 3 6/27/25


https://apps.dtic.mil/sti/pdfs/ADA274691.pdf

DRAFT

activities—a sequencing (inclusion or delegation of responsibility), a selection, or a

concurrent set of activities.

An entity-specific activity specifies actions that it can request to be initiated by a
corresponding entity. Each entity is specified in the environment model as to the
services it provides that may be needed by a product. The intended effect of each entity-
supported service is to modify its own or other ecosystem information content

(including by initiating entity-accessible physical processes).

An activity consists of a set of mutually exclusive actions, each action specifying its
criteria for initiating a request and the information to be provided with it. (An entity
may be replicated within an ecosystem in which case an action applies to all accessible
instances, unless selectively restricted according to entity-distinguishing properties,

such as identity, location, or operating status).

The nature of services provided by an entity may differ depending on whether it
represents an edge device, a user role, or an aggregate /system. An edge entity supports
actions that directly act on elements of the native (physical or virtualized) ecosystem. A
user entity supports actions? by which authorized users, interacting via platform
interface devices in performing their assigned activities, can obtain or report relevant
ecosystem information and request product-supported actions including delegation of
consequent actions. An aggregate entity supports actions, as designated for it, to share

information or coordinate activity with the product via platform interface devices.

Conditions are predicates on ecosystem (environment and entity) information and
product operational status. Operational status is an abbreviation of the history of
product operation, for example, whether particular activities have been activated.
Predicates corresponding to operational status, based on a product’s functionality, may

be condensed to a set of modes, such as “operating”, “unavailable”, or “constrained”. A

mode may be partitioned to distinguish operational limitations. An entity may similarly

3 G. Campbell, "An Approach to Specifying Requirements for User Interfaces”, Software Cost Reduction
Workshop, Naval Research Laboratory, Washington, DC, Nov 1994.

ghc 4 6/27/25


https://www.domain-specific.com/PDFfiles/SCR%20wkshp%20c.pdf

DRAFT

expose its status in terms of operating modes. A set of modes representing the
operational status of each entity can be similarly characterized and referenced. The
concept of authorization (e.g., of a user or system entity to access particular information

or initiate particular activities) applies similarly to modes.

Product Quality

The product quality element specifies the criteria by which the product is built and
evaluated as acceptable for its intended use. Product quality is defined in terms of the
acceptable limits on various properties that determine the fitness of a product for its
intended purpose. This element defines which specific properties apply to the product’s
observable behavior as a whole and provides guidance on making tradeoffs to resolve

any conflicts among those properties so as to achieve a viable product realization.

Product quality is expressed as “behavioral” quality—the degree to which each aspect
of quality is to be exhibited in a product’s observable behavior. Behavioral quality can
be expressed in four broad facets: functionality, performance, dependability, and
usability. While all four of these facets are relevant for any product, the specific
properties encompassed by each and the degree of influence that each property has on
acceptability of the product can differ based on the nature of the product and the
circumstances of its intended use. {A notional formulation of the properties in each

behavioral quality facet is given below.}

{identify elements of product behavior that are most significant determinants in satisfying

various quality criterial

The relative importance of each property to the product as a whole is characterized in
this element. Each property should be characterized in terms of how it is to be
evaluated as a factor in acceptable product behavior. Some properties will be expected
to exhibit an objective measure, predictably achieving either a minimum acceptable
value or a nominal range-limited value, within indicated tolerances. Other properties
may only be subjectively evaluated through reviews of behavior based on customer

criteria.

ghc 5 6/27/25



DRAFT

This element provides guidance as to how each property is expected to influence the
product design including how tradeoffs among related properties can be resolved. The
product design model substantiates whether the specified quality factor goals,
individually and in aggregate, are satisfiable as a design emerges, both during initial
development and as the product is subsequently modified. Design alternatives are
considered in terms of how well each satisfies quality criteria, exploring tradeoffs in
how quality factors are affected. If a viable design cannot be determined based on

provided guidance, it may be necessary to relax this guidance.

The design model is expected to substantiate that each property is properly achieved by
the combination of components that influence that property. To this end, the interface
design element for each design-specified component may be required to specify the
relevance of each behavioral property in its realization. Quality factor goals may be
differently allocated across components of the product architecture (e.g., a factor such as
safety, data integrity, or responsiveness will be directly addressed only within some

portions of the product architecture).

ghc 6 6/27/25



DRAFT

Notional Behavioral Qualities (1)

Functionality, the degree to which a product exhibits expected behavior (i.e.,
effectiveness); typical elements include:

e Utility (satisfies its intended purpose including aligning with and supporting
encompassing enterprise operations)

* Interoperability (operates and communicates properly with entities in its
ecosystem)

e Adaptivity (has the means to modify its own behavior as directed (i.e.,
reconfigurability for e.g., localization, specialization, or personalization) or in
response to prescribed circumstances such as high demand, fault, or degraded
conditions)

Performance, the degree to which a product supports an anticipated workload,
consistent with available resource capacities; typical elements include:

* Responsiveness (reacts to external stimuli and internal effects sufficiently to
maintain consistency internally and with respect to its ecosystem)

* Efficiency (minimizes use of available physical and logistical resources,
including utilization of energy and impacts on environmental conditions)
{conservance}

* Throughput (produces effects at a rate sufficient to maintain consistency with
external elements of the environment and ecosystem)

e Scalability (adjusts to projected variations in workload and resource capacities)

ghc 7 6/27/25



DRAFT

Notional Behavioral Qualities (2)

Dependability, the degree to which a product continues to produce expected effects
(behavior and data) under all (normal, abnormal, and unforeseen) conditions; typical
elements include:

* Reliability (exhibits correct and consistent effects under normal and degraded

conditions) {includes predictability, stability, and survivability, including
resilience and recoverability}

Availability (operates without interruption or unavailability of information)
{includes continuity and connectivity}

Integrity (provides valid and complete information, while excluding
unauthorized access and precluding unspecified behavior) {includes privacy/
security and accuracy and precision of information (ameliorating false, biased,
or unreliable content)}

Safety (prevents or detects and mitigates conditions, actions, or information
that would cause damage to any part of itself or its ecosystem) {includes
redundancy and fault tolerance}

Usability, the degree to which a product is able to be used properly, given the
responsibilities of its intended users/operators; typical elements include:

Conformability (operates consistent with legal, financial, ethical, and equity
dictates and the competencies (language-terminology, knowledge-expertise,
and skills-abilities) of users) {includes accessibility}

Learnability (aids and instructs users in the nature and use of its capabilities and
information content)

Explainability (is able to communicate causes and rationale for prior or
prospective behavior and information content) {includes transparency and
accountability}

Aesthetics (presents and properly conveys provided information and
functionality in a form that facilitates intended usage) {includes consistency}

ghc

8 6/27/25



DRAFT

Product Constraints

The product constraints element specifies extrinsic factors that limit options for the
product’s realization. These factors can reflect provider- or customer-instituted policies
and practices, industry standards, or government-mandated regulations. Constraints
that cannot be relaxed may preclude alternative solutions that might be preferred if left

only to engineering judgement.

Project management, in consultation with program management, must resolve any
conflicts among these constraints or any constraints that conflict with aspects of
envisioned product behavior. Any potential changes in applicable constraints should be
considered in building the product for ease of future changes that may be needed to suit

evolving customer circumstances.

External Constraints

Constraints may be imposed by external authority. Formal authority includes the
various governmental legal and regulatory jurisdictions that establish standards for
accountability, infrastructure, communication, safety, security, data privacy, and
environmental impacts. Relevant industry and market governing bodies may establish
additional mandatory or discretionary technical standards and conventions to be
followed. Compliance with these constraints may limit other choices such as tools and

operating software to be used.

Customer-imposed Constraints

The product must be built to conform to constraints associated with the customer’s
business and intended operational environment(s), fitting within and supporting
customer operations. The customer relationship element of the project management
model (e.g., contractually imposed) and the customer needs element of the product
delivery model may identify (or imply) constraints arising from customer enterprise or

operational conventions.

The customer may designate interface conventions associated with tools and
technologies or systems that reflect the enterprise’s envisioned use of the product. These

may entail expected use of the customer’s computational environment, particular

ghc 9 6/27/25



DRAFT

commercial tools or devices, data security protocols, monitoring and auditing practices,

or other organizational conventions that the product must satisfy. These constraints may

affect the platform on which the product is built to operate. (The customer may also

impose constraints on developmental practices that project management directs be used

in building the product.)

Examples of constraints that could be imposed include:

ghc

Compliance with externally-defined or analogous customer-instituted standards

Designated use of existing or planned customer facilities or preferred
commercially-available (“COTS”) products (including tools, data storage,

communications protocols, or computational platform)

User interface conventions (i.e., the forms in which information is presented to

users according to role)

Computational platform standards and conventions regarding computation and
data distribution, resource usage, messaging, transaction protocols, and logging

and auditing practices

Platform management protocols (startup /shutdown, hardware health and
diagnostic conventions, concurrency techniques, fault handling and degraded

processing)

Platform integrity (system, transactional, and data access security and safety

practices and other related dependability quality criteria)

Hardware-software configuration, compatibility, and reconfiguration/

reprogramming practices
Deployment practices (installation, training, and logistics)

Accommodations for operational and computational environment evolution,

considering requirements if any for continuous operation

10 6/27/25



DRAFT

Program- or Project-Imposed Constraints

Program management, consistent with enterprise guidance, may impose program-
beneficial constraints that limit both developer and customer options for conventions
followed in defining product behavior. The program or project may impose additional
constraints to ensure consistency across related projects and products of the provider or
customer enterprise. These constraints focus on avoiding allocation of program
resources and efforts that are not conducive to overall productivity in achieving long-
term program objectives. This includes conventions for consistency in the formulation
of common product capabilities, for best use of shared assets in a product’s behavior
and how it is allowed to interact with instances of related products and with relevant
entities in its operational environment. Interactions may be constrained as to the entities
and products to be referenced and the protocols to be used in communicating with

these.

Product Evolution

The product evolution specification characterizes how the product is expected to change
over its useful life, as a guide to what changes to the product model as a whole are
likely to be needed. Developers in building the product are expected to consider how
such changes will be accommodated without undue effort as they arise. Such changes

will be anticipated in the product master plan.

Product evolution can be understood in terms of the concept of product subsets. Each
version of the product as needed at a given time can be thought of as having a subset of
all buildable capabilities that will ever be needed over the useful life of the evolving

product. A given version omits those capabilities that are not needed for that version.

The purpose of the product evolution specification is to envision a series of versions of
the product that are going to be needed so that, as changes occur, the changes in the
product at that time are a reasonable fit, requiring no more effort than if they had been
built in the first version of the product. Potential changes are not intended to be
exhaustively identified but rather only considered to the degree necessary to have a
general idea what aspects of the product are likely to be changed over time and some

sense of how; this is meant to influence developers as they build preceding versions to

ghc 11 6/27/25



DRAFT

consider how likely changes will need to be applied to the version they are building,
making choices that will make changes less disruptive and costly than if they had not

been considered.

Developers can pursue this expectation by organizing product model content to include
informative annotations and placeholder code that anticipate how the existing content
would need to be changed when some aspect of expected product evolution is later
realized. In some cases, routine explorations of alternative solutions can be retained as
an alternative solution that would satisfy a future change. As an envisioned progressive
series of future modifications are made, these annotations would need to be modified in

anticipation of other projected future changes.

As with initial product development, product evolution efforts may be limited by
availability of resources and quality tradeoffs that limit feasibility or viability of needed
changes. Developing with the intent of making future changes less costly can mitigate

these limitations.

Product evolution is envisioned in terms of accommodating expected changes over time
in customer needs and enabling technology. Such changes equate to changes in either
the problem or its solution. These are accommodated by corresponding changes in the
product model. Even though the specific details of future changes may not be known,
the recognition of the aspects of the problem or solution that may be likely to change
can be the basis for organizing content so that likely changes are less costly and easier to
make than unexpected changes that may arise. The corresponding types of changes that

drive product evolution include:

e How the operational environment, including capabilities of associated types of

entities, is likely to change over time

e How customer operations are likely to change over time, including changes in

operational capabilities that the product needs to support
e How externally-imposed constraints are likely to change over time
e How enabling technology, including COTS products, is likely to change over

time

ghc 12 6/27/25



DRAFT

e How quality criteria is likely to change over time

This specification should be modified as changes, foreseen or not, progress in any of the
above areas, corresponding to different assumptions concerning how the product is

likely to evolve after that time.

ghc 13 6/27/25



