
© 2000, PHS

Grady H. Campbell, Jr.

August 25, 2000

 Prosperity Prosperity
 Heights Heights
SoftwareSoftware

Adaptable Components
- for Flexible Reuse -

Copyright © 2000, Prosperity Heights Software. All Rights Reserved.

@

© 2000, PHS

A Usual Context for Reuse
• Writing a program that is somewhat similar to past

programs.

• The program is organized into a set of “components” for
modularity.

• Each component has a specified interface that other
components reference.

• Each component can be
– written from scratch
– reused, perhaps with changes, from past work.

When would reuse be the right choice?

© 2000, PHS

A Conventional View of Reuse
1. Find previously built components similar to what you

need.

2. Choose one that best matches what you need.

3. Change it so it that it does exactly what you need.

4. Save it for future reuse by others?

© 2000, PHS

Questions with this Approach
• Does the component you need exist and can you find it?

• Alternatively, do components similar to what you need
exist? Which one will be easiest to change to fit your
needs?

• Does the component you need work correctly? If you
have to change it, will it still work correctly?

• Does the component do things you don’t want? Can you
safely remove them?

• How long will all of this take and wouldn’t it be easier
just to write it yourself?

© 2000, PHS

Analysis
• Reuse ought to be routine for a reliable, cost-effective

software development process.

• A conventional approach to reuse
– is problematically opportunistic.
– makes the reuser do most of the work, within poorly

specified limits assumed by the developer.
– puts all risk on the reuser, without institutional

support. (“reuse to save effort but if it doesn’t work
out it’s your problem”)

– never establishes why similar solutions are possible.

• A better conceived, less simplistic approach to reuse is
needed.

© 2000, PHS

Keys to Reuse Success
• Standardization: Avoid incidental differences between

similar reusable components.

• Easy (transparent) customization: Accommodate
essential differences needed to satisfy specific needs.

• Ownership: Guarantee that somebody knows how each
component works and is responsible for error fixes and
enhancements.

• Motivation: Create reusable components based on
expectations about future needs.

© 2000, PHS

A Basic Tenet for Systematic Reuse

The only sound basis for reuse is an envisioned set
of similar products or components: a family.

• Similarity
– Commonality: the basis for standardization (of work

products and process)
– Variability: the flexibility needed to accommodate

different needs

• Adaptability
– An explicit representation of similarity
– A characteristic set of deferred decisions that

distinguish among the members of a family

© 2000, PHS

2 Views of Reusable Components

a set of similar
components

a

b

c

d

e

f
g

h

i

j

kl
m

n

o

x

qs

r

t

u
v

w

(created)

(derived)

adaptable
component

(created)

(extract)

p1 p2 ... pn

a b
...

z

a set of similar
components

reuser
decisions

(to be
created)

© 2000, PHS

Nature of an Adaptable Component
• Definition: A family of similar components

• Purpose: Supply customized reusable components

• Parts:
– An abstraction: What is the intended purpose of these

components?
– Parameters (reuser decisions): Why is there a need for

more than one of these components? How are they
different from each other?

– A definition: Given a set of parameter values, what
are the steps to create a corresponding component?

© 2000, PHS

The Role of Decisions
• Engineering is a decision-making process.

• An Adaptable Component shows how different ways to
resolve a set of decisions lead to different programs.

• Decisions represent:
– Customer requirements (needs and constraints).
– Engineering tradeoffs (such as cost, quality, ease of

change, esthetics, and feasibility).

• A focus on similar problems (a family) enables
standardization, reducing number, variety, and
complexity of decisions.

© 2000, PHS

Motivations for
Adaptable Components

• Adaptable components support diversity and change:
– Effective reuse requires tailoring to specific needs
– Tailoring is decision-based and mechanical

• Repository-associated costs are minimized:
– Developer builds one component for multiple needs
– Storage space is a fraction of storing an equivalent set

of instance components
– Reuser effort and risks are reduced

• Maintenance of one Adaptable Component is easier:
– Errors are fixed once
– Improvements are available to all

© 2000, PHS

References
• E. W. Dijkstra, “On Program Families”, Structured

Programming, Academic Press, London, 1972, 39-41.

• D. L. Parnas, “On the Design and Development of
Program Families”, IEEE Trans. Software Eng. SE-2
(March 1976), 1-9.

• J. A. Goguen, “Parameterized Programming”, IEEE
Trans. Software Eng. SE-10, 5 (September 1984), 528-543.

• N. Dershowitz, “Program Abstraction and Instantiation”,
ACM Trans. Prog. Languages & Systems 7, 3 (July 1985),
446-477.

For more information: <www.domain-specific.com>

© 2000, PHS

Precursor Mechanisms
• Alternative implementations of standardized components

• Generalized (runtime-adaptive) components

• Partial-code generators (GUI, parsers, etc.)

• Word processor conditional/form letter mechanisms

• Compiler macros, flags, and switches

• Object-oriented language mechanisms: subclasses,
inheritance

• Templates (C++)/generics (Ada)

© 2000, PHS

Motivations for a
Special-Purpose Mechanism

• A set of similar components can be concisely represented
in one unified source.

• Form and content of instances is easy to envision.

• All tailoring is traceable entirely to parameters.

• Parameters can be expressed at a problem-level,
independent of solution details.

• Instance components can be derived mechanically.

© 2000, PHS

A.C. Example
Sequenced Collections

A progression from specific to abstract:

1. Fixed-size, fixed-type stack

2. Fixed-size, variant-type stack

3. Variant-size, variant-type stack

4. Variant-size, variant-type, variant-access sequence
(stacks, queues, deques)

© 2000, PHS

F-size, F-type Stack
public class intStack {

static final int maxSize = 1024;
int data [] = new int [maxSize];
int size = 0;

public void add (int p1) throws stackFull {
if (size == maxSize) throw new stackFull ();
data [size++] = p1;
}

public int get () throws stackEmpty {
if (size == 0) throw new stackEmpty ();
return data [--size];
}

}

© 2000, PHS

« program stacks (name:text, datatype:text, maxsize:text) «
public class «name»Stack {

«datatype» data [] = new «datatype» [«maxsize»];
int size = 0;

public void add («datatype» p1) throws stackFull {
if (size == «maxsize») throw new stackFull ();
data [size++] = p1;
}

public «datatype» get () throws stackEmpty {
if (size == 0) throw new stackEmpty ();
return data [--size];
}

}
» »

F-size, V-type Stack

© 2000, PHS

V-size, V-type Stack
« program stack (name:text, datatype:text, maxsize?:text) «
public class «name»Stack {

«maxsize?««datatype» data [] = new «datatype» [«maxsize»]; int size = 0»
: «Vector data = new Vector () »»;

public void add («datatype» p1) {
data«maxsize?« [size++] = p1»:«.put (p1)»»;
}

public «datatype» get () throws stackEmpty {
if («maxsize?«size»:«data.size()»» == 0) throw new stackEmpty ();
return data«maxsize?« [--size]»:«.get ()»»;
}

}
» »

