
Competence-based Requirements Engineering
Grady H. Campbell, Jr.

domain-specific.com
Annandale, VA, USA !

Abstract—The potential exists to streamline the initial
requirements engineering effort involved in building a
software product. Most software today is, in many respects,
highly precedented, differing only with respect to certain
particular capabilities. Recognizing that an envisioned
product is similar to previously developed products enables
an inverted, more aggressive approach to defining
requirements. Three elements contribute to this
streamlining: (1) a reformulation of the development
process as an opportunistically-ordered, information-
synchronized, iterative coalition of concurrent activities, (2)
a presumption of developer competence (knowledge,
expertise, and experience) in the problem-solution space of
the relevant application domain, and, (3) a conception of
requirements as being a model of an envisioned product’s
expected observable behavior. The requirements takes a
bipartite form consisting of an under-constrained customer
expression of product behavior and an over-constrained
developer expression of product behavior which must be
kept mutually consistent. Based on the product line premise
that similar problems are amenable to similar solutions (in
this case, the need for and expression of similar behavior),
this approach can expedite attaining an initial expression
that approximates the envisioned product’s requirements,
entailing less effort on precedented elements while giving
more attention to less well understood elements. The
concurrent process and bipartite form of the requirements
also enable greater flexibility for accommodating changing
requirements, as customer needs evolve during development
and over the subsequent lifetime of the product.

Index Terms—requirements , domain-specif ic ,
competence, similarity, uncertainty, change, model, process.

I. INTRODUCTION
In every respect, software engineering is an

immature discipline. Properly balancing cost-schedule,
functionality, and quality is relatively unpredictable,
being highly dependent on customer and developer
organizational circumstances and the competence
(knowledge, expertise, and experience) of individual
participants.

The concept and practice of requirements is exhibit
one. The requirements for a software product is seldom
well-understood or properly communicated before,
during, or after development. Documentation that may
exist is typically out of date or otherwise inaccurate.
The implication of this is that an understanding of the
intended software behavior of a product is unduly
dependent on access to a small number of people or
inferences from the details of complex software code
without insight into determinant tradeoffs or rationale.

This paper suggests an alternate vision for the
practice of software engineering, specifically the
treatment of requirements in a disciplined product
development effort.

II. THE VISION
The proposed vision has three elements:
• Developers possessing competence in the

relevant problem-solution domain
• An information-driven concurrent development

process
• A conception of requirements as a model of an

envisioned product’s expected behavior
Any organization that builds software has particular

areas of competence, consisting of the knowledge,
expertise, and experiences of its developers and
expressed in the products that it has previously built.
These areas of competence include both technology
(solution) areas and subject matter (problem) areas. An
effective product results from a proper problem-
solution alignment. An organization that has existing
competence in specific areas will be successful more
quickly in building a product that embodies those areas
than in building a product for which they must first
acquire needed competence.

A traditional software development view of
requirements engineering is that the developer will have
a general software engineering competence that will
suffice for a solution but that problem domain
competence that frames the solution must come from
the customer. The developer acquires domain and
problem understanding through an elicitation-analysis
process with the customer and then builds a solution
based on that information. However, experience tells us
that a developer having existing problem-solution
competence, including awareness of domain-specific
terminology, tacit knowledge, and past solutions, will
more quickly understand the needs of the customer’s
business and what to build based on similarities to
previously-known problem-solutions. A developer with
such competence is necessarily better prepared to more
rapidly build an acceptable product than one lacking
such competence.

The activities for developing a software-based
product are best not rigidly ordered – the order should
be driven by the availability and needs for coherent
capture of relevant information. Such a process mirrors
the natural way that an individual working alone would

build a product. Each activity is distinguished by
separation of concerns to be uniquely responsible for
information related to specific aspects of a product; the
information associated with each activity constitutes a
distinct partial model of the envisioned product.
Nominally, the overarching activities of this process
correspond to models of the requirements, design,
implementation, verification, and delivery of the
product. The proper time for working on an activity
should be determined opportunistically by the
availability of information that it depends upon or the
need for information that it produces.

Requirements in particular is a model of the
expected observable behavior of the envisioned
product. This model has a bipartite realization:

• (outer requirements) The capabilities that the
customer expects of the product so as to effect
needed changes in how their business operates

• (inner requirements) The behavior that a product
must exhibit to satisfy its intended purpose

Outer requirements are meant to be a customer view
of the requirements, a communication between the
customer (representing users) and the developer that
defines what capabilities the customer expects the
product to give them. Ideally, outer requirements should
be under-constrained so as to not impose non-essential
criteria on the solution, leaving the developer adequate
leeway to resolve tradeoffs among functionality, cost-
schedule, and quality. It represents the customer’s
perceived needs or preferences and, as such, is an
expression of the criteria against which the customer
will validate and determine acceptability of the product.

Inner requirements are a developer view of the
requirements , a communicat ion among the
development team that elaborates upon the outer
requirements. It should be over-constrained such that it
eliminates all essential uncertainties concerning the
expected observable behavior of the product. This
expression can be freely changed based on feedback
among development activities as long as it is kept
consistent with the outer requirements (including any
changes negotiated with the customer during
development). Inner requirements constitutes a build-to
specification of the envisioned product, is an expression
of verification criteria for the product during
development, and, upon delivery, constitutes an as-built
specification of the product.

Motivating Assumptions
For various reasons, software developers have

tended to hold some unrealistic notions about the nature
of requirements, such as that customers should “know
what they want” and that this should not change during
development. Somewhat different assumptions would
engender more realistic expectations, leading to more
effective software development practices:

• Requirements is simply a model of the expected
behavior of an envisioned product. Being a
model, it does not describe a specific product; it
could be satisfied by many differing but model-
equivalent products.

• The perceived nature of the product will change
through its development even if the
requirements never change. A model inherently
omits essential and incidental problem-solution
knowledge (e.g., tacit problem knowledge,
engineering alternatives and tradeoffs for a
solution); some implications of this will not be
known until the product has been concretely
realized and experienced in a facsimile of its
operational context.

• Uncertainty and change are a normal, inevitable
and unavoidable, aspect of building a product
that will meet actual needs. Actual needs are
likely initially to be poorly understood and
poorly communicated. The actual needs will
also change over time due to changing business
circumstances and tend to also change due to the
injection of the product itself into the customer’s
business process. A product that meets poorly
understood “requirements” will be a poor fit to
actual customer needs.

III. INFLUENCES
The proposed vision and approach is a distillation of

30 years of software engineering explorations by many
different people. These explorations have focused on
both theory and practice in software processes,
requirements methods, and software product line
methodology.

Jackson argued that the future of effective software
development lies in specialized (domain-specific)
knowledge in the same sense that all other branches of
engineering are specializations [2]. An underlying
just i f icat ion for this view is that explici t
communications about requirements are based on
assumptions, arising from tacit knowledge, that are
shared among domain experts. For software developers,
the concern is understanding the aspects of the problem
in context, its processes and tradeoffs, that affect the
solution.

The significance of tacit knowledge, about both
problems and their solutions, is broadly recognized. A
product based only on explicitly communicated
information from a customer without awareness of
underlying tacit knowledge and assumptions will be a
fragile solution. Similarly, as a model of the product,
requirements can only approximately represent the
product as a whole, and is necessarily dependent on
being consistency with tacit knowledge.

Faulk provides a good characterization of a sound
software requirements discipline, including problem
analysis and specification [10]. However, that

conception can be streamlined if developers have
competence in the domain of the envisioned product,
including problem-solution knowledge of previously
developed similar products.

Approaches that emerged in the early 1990’s were
conceived to focus development organizations on
leveraging their competencies and institutionalizing
domain problem-solution knowledge as the basis for
more quickly building high-quality solutions (e.g.,
experience factory [3] and software product lines [4]).
These approaches were based on the belief that
effective development organizations tend to have
greater expertise in the understanding of problems and
development of solutions for products in particular
application domains. The most successful organizations
are ones that are able to align their business objectives
to match their expertise and to enhance their expertise
to the benefit of their business objectives.

Recent work has accepted the benefits of developer
domain competence but has advocated participation by
domain-ignorant engineers in requirements elicitation
to better expose overlooked tacit assumptions [7]. This
is a sound observation but the reality in practice is that
domain competence remains too scarce among
developers. Even more so, traditional development
practices are formulated with the assumption that
development will start with a blank slate that is
collaboratively elaborated into a product based on the
domain knowledge of the customer and the general
software competence of the developer. A process that
assumes developer domain competence has the
potential to be more effective.

IV. THE ROLE OF COMPETENCE IN SOFTWARE
DEVELOPMENT

The base level of software competence is the ability
to build software in general, to build for use in a
particular computational environment, and to perform
the full scope of activities entailed in creating a
complete software product. As with any complex
activity, the totality of this competence takes a good
many years to learn, involving knowledge of both
theory and practice. Today, this learning is augmented
by the existence and use of various libraries of
generally useful software components.

With only this general level of competence, people
have built many complex systems. Doing this has
involved large amounts of effort to learn enough about
the problem domain of a particular customer’s business
to understand what software needs to be built. In doing
this without prior knowledge and expertise, there are
inevitably many misconceptions, missteps, and
misunderstandings. As a result, software developers
have come to recognize that continuous rapid iteration
through a well-conceived series of activities (notionally,
requirements, design, coding, testing, and installation)

is necessary to discover and correct for these
shortcomings.

It is known empirically, however, that a developer
who has built multiple products of the same general
type will need to spend much less time learning about
the problem domain to build another product of the
same type. There is still the need to determine how the
specific needs of a particular customer fit within the
problem domain but this is much less when the
developer is already familiar with other similar
problems and solutions.

V. REQUIREMENTS AS A MODEL OF BEHAVIOR
The concept of a software “requirement” in practice

is a somewhat vague and confusing term. As a general
concept, we can think of software requirements as an
expression of the criteria that a product must meet to
satisfy its intended purpose. The premise of this paper
is that we can improve the predictability of software
development, improve the quality of the software, and
reduce its cost if we correct the confusion that
surrounds requirements.

It is not sufficient to conceive of requirements as
being a simple list, of “shall” statements or “features”,
that can be ticked off, ignoring interactions and
dependencies and mixing essential and incidental
aspects. Instead, requirements is an abstract expression
of a coherent whole, describing the expected observable
behavior of an envisioned product, and corresponding
to some one of a set of similar products. It is resolved to
a particular product through engineering judgement
based on a systematic exploration of alternatives and
tradeoffs. A product is an elaboration of requirements
augmented by tacit domain and engineering knowledge.

So, requirements as a model describes the
observable behavior expected of a referenced product.
A model, in turn, is a representation of a product that is
sufficient to provide approximate answers to a
designated set of questions about that product.
Requirements, being a model, should provide answers
to four categories of question:

• Concept: What is the purpose, objectives, and
use to be made of the referenced product?

• Context: What is the nature and composition of
the system environment(s), including user roles,
connected systems, and devices, into which the
product is to be injected so as to induce
modified capabilities and behavior in that
system?

• Content: What is the observable behavior,
including functionality and qualitative/
quantitative properties, to be exhibited by the
product in its operational context?

• Constraints: What are any externally imposed
limitations, including legal, regulatory, industry,
or business considerations, on the construction
or composition of the product?

There are questions about the product that
requirements should not answer. For example, it should
not express the internal structure of the product, the
nature of its constituent elements, how the product is
verified as being properly built, or how much effort
would be required to modify the product’s behavior.
Other models of the product should answer these and
other such questions.

Expressing Bipartite Requirements
The bipartite realization of requirements (outer and

inner views, as described above) reflects the differing
concerns of customer and developer. The outer view is
concerned with ensuring that the product will fit into
and support operation of an envisioned new or
improved business practice, providing capabilities that
users will need to perform their work. The inner view is
concerned with establishing a coherent definition of the
precise behavior to be expected of the product,
providing a common and consistent basis that all
activities can reference as authoritative. These two
views establish, respectively, the lower and upper
boundaries on what constitutes acceptable behavior,
with the space between representing the flexibility that
the developer has to make needed economic and
engineering tradeoffs.

Outer requirements that are over-constraining,
specifying acceptance criteria that are incidental, not
essential to the product’s intended purpose, can
unnecessarily inhibit the developer from considering
what could be better alternatives. Conversely, inner
requirements should be over-constraining, resolving
(even arbitrarily) any uncertainties to preclude their
being resolved inconsistently across activities.

Outer requirements can be determined only in
consultation with the customer and subsequently
changed only to correct for misunderstandings,
uncertainties, or changing business circumstances.
Changes to outer requirements will propagate as
changes to inner requirements. In specific cases,
development tradeoffs may warrant negotiating with the
customer to change outer requirements (e.g., to avoid
undesirable effects on cost, schedule, or product
quality).

For a customer, requirements is an abstract
characterization of their needs whose implications will
not be entirely clear until the customer is able to
experiment with trial versions of the product. Such
trials may expose misconceptions in the outer
requirements, failures to account for tacit knowledge, or
new insights into how the product can enable
improvements in business practices. Such insights will
often lead to revisions in the requirements, leading to
delivery of a better final product.

The inner requirements needs to give developers
having appropriate solution-space competence enough
problem-specific information to enable them to build a

suitable product. Inner requirements must be kept
consistent with outer requirements but can otherwise be
changed freely based on feedback about tradeoffs
among development activities.

The inner requirements, as a build-to specification
of expected product behavior, is the basis for ongoing
product verification and, upon delivery of the product,
becomes an as-built specification of the product’s
expected observable behavior. The outer requirements
should be the agreed basis for product validation and
customer acceptance.

VI. A CONCURRENT SOFTWARE PROCESS
 A software process is a partially ordered set of

activities for the development and evolution of a
software product. Each activity is concerned with
particular related portions of information about a
problem and its solution in a customer context.

The tradition of organizing development into phases
has had the effect of imposing a mentality of false
sequentiality on the process, that activities must be
completed in a fixed order. This has been countered
with a discipline of repeated iteration over activities so
that feedback from insights gained in subsequent
activities and changes in understanding of needs could
be better accommodated.

If we consider how an individual developer would
naturally approach this, we can see the potential for a
more naturally opportunistic ordering of effort based on
information dependencies. Each activity is associated
with a model of the product that expresses particular
aspects that are relevant to the purpose of the activity.

In this view, all activities, including requirements,
can occur concurrently with associated information
flowing through the product to be shared among all
activities as needed (Fig. 1). In this context, “product”
consists not only of materials that are to be delivered to
the customer but all information referenced or created
during the development process, particularly
information useful in future evolution of the product
such as reference materials, analyses of alternatives and
tradeoffs, and rationale for alternatives chosen.

All of the models associated with activities in
aggregate comprise the product. In a natural (what an
individual would do naturally) and effective process,

Figure 1. A Concurrent Process

the developer will move freely among the various
activities depending on where particular information is
best captured or produced. Each action tends to trigger
propagation of information (forward or back) to other
activities as required to maintain product consistency.
While a single developer would have to simulate
concurrent activity by interrupting one activity to work
on another, a developer team can be working
simultaneously on different activities or iterations.

This sort of iteration among activities requires a
strong discipline of baselining and version management
but is more likely to result in a product that satisfies
actual changing customer needs. This discipline also
fosters the expectation that the product should rapidly
attain a state of partial completeness sufficient for being
demonstrated or even delivered on demand rather than
according to an artificially prescribed schedule. With
continuous verification to ensure consistency across the
product, this also provides more flexibility to engage
the customer in making informed tradeoffs for the best
balance among cost-schedule, functionality, and quality.

The ordering of the activities of a concurrent
software process is neither fixed nor predetermined; it
is derivative of actual informational dependencies
determined in performance of the activities. Activities
are characterized by the product information they
consume and/or produce. An activity can be performed
anytime after information that it needs becomes
available (and/or when information it produces is
needed by other activities). As with any iteratively
performed process, each activity is performed
repeatedly, both to address different subsets of the type
of information that it references (e.g., different code
components or test sets) and to iteratively extend,
refine, or revise previously considered information
(e.g., changes in the product’s design due to changes in
requirements or vice versa).

The means to control the effort required to reach a
state of completeness with this approach comes not
from the fitting of activities into an arbitrary schedule
but through the imposition of bounds on the
requirements model from which appropriate progress
milestones can then be inferred. A product is considered
conformant to the requirements if it satisfies any
consistent subset of the behavior expressed in the
requirements model. Failure to meet any milestone
would be addressed by a further subsetting of the
requirements model to establish an achievable target
within an acceptable timeframe.

The notion that the requirements activity should
occur prior to other activities is somewhat true in the
sense that it should be the definitive source as to what
needs to be built but this does not mean that other
activities must wait for requirements. Similarly, no
activity, including requirements, is finished until the
product as a whole is complete.

The process can start with any (one or more) of the
activities, based on what information is available about
the envisioned product and the competence possessed
by available developers. For example, an initial
increment of the process could consist of a first iteration
of the requirements activity to determine initial outer
requirements, the design activity to create a preliminary
architecture based on past similar solutions, the coding
activity to create or obtain low-level components that
are likely to be useful, and/or the testing activity to start
creating a suitable testing infrastructure. Information
used and produced in iterations of each activity must be
version-managed for alignment with iterations of
related activities. The aggregate results of a set of
related activity iterations comprise an interim version of
the product. Any interim version of the product can be
delivered for use if it can be determined by the
customer to be acceptable.

Requirements for a product as initially conceived
informs other activities but must be revised as
circumstances and understanding of customer needs
change. The implications of such revisions must then be
accommodated in other activities. Similarly, insights
gained in performing other activities, including
resolution of uncertainties and exploring alternatives,
can lead to changes in the requirements that must then
be reconciled to customer needs. This sort of iteration
among activities, with strong baselining and version
management, is an effective way to avoid building
products that fail to meet current needs when delivered.
Each instance of an activity is also performed
iteratively but internal iterations need not be
synchronized across activities (e.g., requirements can
progress through several iterations while other activities
reference only a preceding baselined version).

As activities proceed and constituent product
information is acquired or created, other activities
become feasible to perform using that information.
Natural information dependencies are directional and
define information flow among activities. Every
information path between activities has a reverse path
for feedback to reflect insights gained in the use of
information shared. For example, the requirements
expresses information about expected behavior that
influences design, coding, and testing activities.
Performance of those activities will expose issues or
tradeoffs that will need to be resolved in a subsequent
iteration of the requirements activity, followed by
additional iterations of those dependent activities.

VII. INVERTING REQUIREMENTS ELICITATION
In the software process, the purpose of the

requirements activity is to determine the behavior
(functionality and properties) that the customer needs
the product to exhibit and to express that in a bipartite
specification of the requirements.

Requirements, being a model of the software
product, does not determine a single specific product
but rather expresses behavior that many conceivable
products would satisfy. Furthermore, this model is not
static, it expresses perceptions that are susceptible to
uncer ta in ty, mis informat ion , and changing
circumstances. These issues are made worse by a desire
for certainty in customer needs as fully known,
understood, and fixed but such certainty would be an
illusion [6]. The necessary response is a process that
views uncertainty and change as unavoidable and is
organized to anticipate and accommodate changes to
the product during development.

Traditionally, the requirements activity for a custom
product starts by asking the customer to describe their
needs from a blank slate. The developer then
laboriously elicits more details, gaining a largely
superficial understanding of the customer’s actual
needs. Customers know what they need in broad terms
that are easily expressed and understood but the details
a r e o f t e n m i s l e a d i n g , w i t h o m i s s i o n s ,
misunderstandings, and premature or ill-founded
decisions about the product. If developers lack domain
competence and rely on the customer’s characterization
of needs, there can be a significant effort required to
understand how those needs should be expressed in a
solution. It may be difficult to correlate a particular
customer’s view of a problem to that of other customers
and past solutions. Although the potential always exists
to leverage knowledge of past similar problems and
their solutions, this can be impeded by a given
customer’s parochial view of their own circumstances,
needs, and potential solutions.

A developer with appropriate domain competence
may be able to invert the traditional approach to
requirements elicitation. The basis for this inversion lies
in product line practices. The value of applying domain-
specific problem-solution knowledge to software
engineering motivated the development and use of
software product line methods, including a streamlined
approach to requirements definition based on perceived
similarities in the needs of different customers.

The goal in the conception of product lines was to
establish a practical approach to building multiple
similar high-quality products for a coherent market (i.e.,
multiple customers having similar needs), but with less
effort in aggregate, only marginally greater than that
required to build a single product. The resulting
requirements method focused on identifying
commonalities and variabilities in similar products that
would reduce the requirements activity to that of
resolving a discrete set of essential decisions that
differed among customers. These are decisions that
express differing customer needs sufficiently to
characterize a particular product to be built, when
presented to a developer with appropriate domain
competence.

Generalizing from this perspective, a developer who
has expertise in a relevant business domain already
knows, with a reasonable degree of certainty and
precision, what the customer is going to request,
including many aspects about which the customer will
have uncertainties including aspects that different
customers may approach differently. A developer
having appropriate domain competence is able to ask
questions that will be sufficient to resolve many of
these uncertainties and differences, while already
knowing how different choices will affect the solution.

A developer's domain-specific competence includes
familiarity with

• relevant enabling technology,
• prior problem-solutions in that domain,
• the business context in which a product is to be

used, and
• how the customer’s enterprise and business

practices correspond to others.
Being familiar with past problems and their

solutions, the developer is able to create a generalized
expression of requirements for products of the type to
be built. This avoids having the user express what are
actually common needs in an incidentally different form
but also exposes differences in customer needs from
those with which the developer is familiar. By
understanding how one customer’s needs differ from
others and how such needs have been addressed in
previous products, the developer can identify
appropriate opportunities for applying, and modifying,
past solutions to current needs, allowing for more effort
on other aspects that are less well understood.

A significant challenge with this approach is to
express the customer’s needs in a structure and
language/vocabulary that the customer understands. For
this, the developer needs to create a canonical
expression of requirements that can be systematically
translated into the terminology that a particular
customer uses. However, there is often a market-level
terminology that is shared among customers, reducing
this concern.

Seven steps comprise this inverted approach to
initial requirements determination by the developer:

• Determine a canonical form of requirements
expression (outer and inner views) that is
characteristic of the customer’s relevant
business domain.

• Enter a dialog with the customer to confirm
common aspects and identify any discrepancies
in the canonical requirements form.

• Elicit preliminary answers to key decision
criteria that distinguish the customer’s perceived
needs and any associated uncertainties.

• Create a customized expression of the canonical
requirements, based on customer-specific
resolution of decision criteria.

• Review and revise the customized requirements
expression until the customer is satisfied that the
outer view is a reasonable approximate
expression of their needs.

• Build product prototypes that satisfy the inner
requirements, modifying the customized
requirements based on developer and customer
evaluations of each prototype.

• Deliver the product including the associated
final outer requirements expression for
validation, acceptance, and deployment.

A Few Expository Examples
A look at examples of a few simple requirements

elements will illustrate how developer domain-specific
competence can enable rapid convergence on a good
first approximation of a customer’s needs. By
recognizing needs that recur broadly for a type of
product, analysis efforts can quickly narrow to focus on
singularities, uncertainties, and tradeoffs that are most
significant to that customer. Examples from a report on
real-project experiences of a device producer illustrate
how domain competence can expedite the elicitation
and specification of requirements [9].

The implication with each of these examples is that
a developer with appropriate domain expertise would
be able to formulate a canonical expression of
requirements for a customer based on such examples.
This formulation would be customized with the
customer based on their answers to a characteristic set
of discriminating decisions, including any necessary
localization of terminology. This is meant to give a first
approximation to customer needs much more quickly,
eliminating the need to spend effort on what are
predictable needs, and permitting more effort on
unprecedented and uncertain or poorly understood
needs. It also supports the possibility of earlier
prototypes of the product that would both increase
cus tomer conf idence and expose r e s idua l
misconceptions and misunderstandings.

The first example concerns a requirement that is
deemed as expressing a design constraint, that products
need to be designed and packaged so as to achieve
maximal fit on standard sized shipping pallets. This is
possibly a universal requirement: it is unlikely that any
customer would choose to forego this as a requirement
unless it conflicted with some more compelling
tradeoff. Furthermore, it is likely in any case that a
designer would anticipate this as a constraint. It is
presumably in the requirements only so that it will not
be overlooked. In a conventional elicitation, this might
not arise as a requirement if the customer happens to
take it as a given and fails to express it as such. Leaving
it to the customer to specify this as a need has the added
detriment that different customers may express this in
different terms even though a single canonical
expression might in fact suffice for everyone.

Alternatively, perhaps there are alternatives that the
customer has not realized simply because this has
always been their practice. If there are credible
alternatives to this constraint, the developer should be
offering them to the customer as an option, rather than
just assuming that the customer might have already
considered and dismissed such alternatives.

A second example concerns how instructions are to
be attached to the product. The customer may be
accepting past practice without a proper analysis of
alternatives and tradeoffs. Certainly different customers
might prefer to attach instructions differently or enclose
them unattached in packaging or not enclose
instructions at all. However, the choices in such a case
are not very numerous or unpredictable. There might
very well be, for example, only four choices: attached
to front, attached to back, enclosed loose, or omitted.
Left entirely to the unguided discretion of the customer,
they might arbitrarily require a totally different option
even if one of the limited standard choices would have
been perfectly acceptable or even preferred but not
considered. By offering the customer limited choices,
those will often suffice and be quickly settled but still
nothing precludes adding new options for one customer.

A third example concerns the ways in which a
product can be influenced (providing capabilities
needed for interaction with another product) or
constrained by other interacting products (lacking
capabilities that might otherwise be used). Knowledge
of these influences and constraints are not particular to
the immediate customer but are probably known to all
producers of similar products. Having each producer
describe these constraints separately, assuming all
descriptions were correct, would differ only because
they were written by different people or because each
omitted different information that was not relevant to
their particular product’s use. With the developer
already knowing about these, the customer would not
have to spend time describing them but only needs to
relate any special concerns about them.

A final example illustrates a case where user needs
are initially valid as specified but are probably over-
constrained relative to the long-term evolution of the
product. In this example, the customer specified that the
software must accommodate either of two particular
connector devices. These appear to be arbitrary
requirements as no rationale is given for these specific
choices; a better approach would be to specify what
about these two and only those make them preferred. A
less specific requirement might permit building the
software so it would be easier to modify to
accommodate other devices in the future. Ideally, the
software should be built, if feasible, to support any
devices having the properties that led to the selection of
these if that were known. An alternative would be for
the developer to specify particular device types in the
outer requirements but define the inner requirements to

accept any devices having the required characteristics,
anticipating the possibility of alternative devices as the
technology evolves.

It should be clear from these examples that there is a
potential to eliminate a good portion of the initial
requirements engineering effort if the developer has
domain competence. Admittedly, this is not an option
for a developer who is only a generalist in software and
expects to elicit needed domain knowledge from each
customer. This is a disservice to the customer but many
customers seem to accept this as the only alternative to
buying packaged products that might exist in some
form but would in turn either require substantial
customization in their own right or require the customer
to change their business practices to fit the software.

The lesson of these examples is that within a given
domain many decisions as to what is required are
foreseeable, predictable and to a greater or lesser degree
an expression of common practice or even common
sense. Performing a requirements analysis as if every
effort should begin with a blank slate that each
customer must fill is wasteful and symptomatic of the
immaturity of the software engineering discipline. The
remediation to this waste is to start from a base of
domain-specific competence upon which each
customer’s particular needs can be consistently focused,
exposed, and elaborated. Even a first time effort to
build a truly unprecedented product will begin with
reference to known similar products – even an entirely
new product will be based to a good degree on similar
existing products because no product today is unique in
all aspects. This has the benefit of limiting effort that
needs to be spent on precedented aspects, permitting
more effort to be focused on exploring truly new or
unique aspects.

VIII. SUMMARY
The development of a software product can be

thought of as a search through the space of all possible
problems and their solutions. With a traditional
approach, the goal is poorly defined and the space is an
undifferentiated set of potential products. With the
application of domain competence, this amorphous
space coalesces into recognizable subspaces of similar
problems having similar coherently associated
solutions. By first mapping a customer’s perceived
needs onto a familiar subspace of problems that
represent similar jobs to be done, the process of better
approximating customer needs and then resolving
uncertainties and tradeoffs to efficiently construct a
responsive product can be more rapidly and predictably
performed. !

REFERENCES
1. S. Faulk, J. Brackett, P. Ward, and J. Kirby, “The Core

Method for Real-Time Requirements”, IEEE Software 9
(5), 1992, 22-33.

2. M. Jackson, “Problems, Methods, and Specialization,”
IEEE Software 11 (6), 1994, 57-62.

3. V. Basili, G. Caldiera, and H. Rombach, “The Experience
Factory,” Encyclopedia of Software Engineering, John
Wiley & Sons, Inc., 1994, 469-476.

4. G. Campbell et al, Reuse-driven Software Processes
(RSP) Guidebook. Herndon, Va: Software Productivity
Consortium, 1994. <www.domain-specific.com/RSPgb>

5. S. Faulk, et al, “Scientific Computing's Productivity
Gridlock: How Software Engineering Can Help”, IEEE
Computing in Science and Engineering 11 (6), 2009,
30-39.

6. G. Campbell, “The Illusion of Certainty”, Naval
Postgraduate School, 7th Annual Acquisition Research
Symposium, May 2010, 257-264. <www.domain-
specific.com/PDFfiles/NPS-AM-10-022-ghc.pdf>

7. A. Niknafs and D. Berry, “The Impact of Domain
Knowledge on the Effectiveness of Requirements Idea
Generation during Requirements Elicitation”, RE 2012,
Chicago, IL, 2012, 181-190.

8. R. Salay, M. Chechik, and J. Horkoff, “Managing
Requirements Uncertainty with Partial Models”, RE 2012,
Chicago, IL, 2012, 1-10.

9. J. Savolainen, D. Hauksdóttir, and M. Mannion,
“Challenges in Balancing the Amount of Solution
Information in Requirement Specifications for Embedded
Products”, RE 2013, Rio de Janeiro, Brasil, 2013,
256-260.

10.S. Faulk, “Understanding Software Requirements”,
Software Engineering Essentials, Volume I: The
Development Process, R. Thayer. M. Dorfman, Eds.,
Software Management Training Press, Carmichael, CA,
2013, 1-42.

