
DRAFT

2.7 Product Components

The product components model specifies the components, as defined in the product
design model, that constitute the content with which a product is built. A component
specification has three elements: its design (interface and internal specifications), its
implementation, and its verification (substantiation that its implementation conforms to its
design).

A software component is implemented in the form of a module—a realization of the
responsibilities assigned to that component by the product design . Multiple 1

discriminated modules can be associated with a component to provide alternative
customized realizations of its capabilities. Each alternative must satisfy component
responsibilities but can differ according to how it addresses tradeoffs and constraints on
component capabilities and behavioral quality criteria. Additional modules can be
created as needed to add, modify, or remove capabilities that distinguish them from
other modules.

A dependent (i.e., client) component can selectively reference a specific module that best
supports its needs. For example, there may be multiple modules implementing an
“entity” component, ones that provide interactions with a physical realization of that
entity and others that provide interactions with a virtual realization of that entity.
Similarly, modules may differ in their tradeoffs among quality criteria (e.g., better
performance versus higher data precision or stronger security), perhaps only partially
supporting full component capabilities. Finally, two modules may differ only in
whether some extrinsic capability, such as instrumentation that supports empirical
evaluation, is included.

Component Design

The component design element elaborates the capabilities of a component, consistent
with product requirements and in conformance with all elements of the product design.

 The ability to build components for reuse, particularly those having alternative implementations of 1

component responsibilities (i.e., modules), are discussed in section 4.1.

ghc 1 11/2/23

DRAFT

Component capabilities include the behavior that the component enacts and any
services it provides that support the implementation of other components.

A component design has two parts, an interface specification and an internal
specification. These specifications describe the distinguishing capabilities of the
component and its how associated modules differ in their realizations of component
behavior, including functionality and quality.

Consideration must be given to whether and how a component’s capabilities are likely
to be changed, both during its initial development and over its useful life. Anticipating
how a component is likely to evolve over time can result in a component design whose
interface is less likely to require change and whose internals will require less effort to
change as needed.

An interface specification establishes the conceptual integrity of the component. It
describes, for its implementation and for client component implementations, a
component’s behavioral properties and its client-accessible services, consistent with its
design-specified responsibilities, that other components can reference for their
implementations. Behavioral properties include the functions it performs and the
quality criteria that the component is expected to satisfy.

A component’s interface specification defines an idealized view of the component’s
capabilities that can be assumed as fixed—unlikely to change. A component is
implemented by one or more alternative modules that must conform to this
specification. However, a module can restrict this specification both in terms of
accessible capabilities and quality factors (e.g., providing different tradeoffs in
conflicting quality criteria). Each module is characterized in terms of how it differs from
others in both behavioral properties and provided services.

Each module is characterized in the component interface specification by how it
specializes the component’s capabilities as criteria for choosing among them for use by
a client component. Any changes to an existing module’s interface (e.g., to correct
conceptual defects or deficiencies) may require changes to a dependent component’s
implementation. Changes to the component interface that require changing an existing

ghc 2 11/2/23

DRAFT

module interface are likely to propagate, forcing changes in dependent components as
well.

{content of a component interface specification}

A component’s internal specification describes the internal design and implementation
of the component, identifying relevant references, assumptions, constraints, and
differences or potential changes in needs or enabling technology. Alternatives and
tradeoffs are identified as factors in determining what supporting services are needed to
best implement each of the component’s modules.

The factors that distinguish and constrain how each module’s capabilities differ are
described with associated rationale—why each module is needed as a specialization of
component capabilities including to better satisfy particular client component needs—
and any shared content or resources that modules should be implemented to use as
needed.

{content of a component internal specification}

Component Implementation

The component implementation element consists of the implementation of one or more
alternative modules that each provide a conforming specialized implementation of the
component design. The internal design establishes the structure and form of each
module.

Each module may exist in a series of versions, primarily during initial development and
over time to correct defects. Conversely, the need for a module with more substantial
differences—differing tradeoffs or constraints—may best be achieved with a new
module, retaining existing alternatives as-is for continued use (e.g., to recreate previous
versions of the product or being used as-is in other products).

ghc 3 11/2/23

DRAFT

A module may be implemented as a crafted artifact in a human-understandable
“source” form that is either “compiled” (mechanically transformed into a platform-2

executable “object” form) or “interpreted” (translated at runtime into an equivalent
platform-supported computation). Alternatively, a module may be obtained from a
separate, project-designated repository of previously built components or derived by
means of an appropriately parameterized generative tool. In all cases, the module must
be documented and verified according to relevant developmental quality criteria as
specified by project management.

A module may be limited by the component design as to the other components or
associated modules that it is allowed to reference for its implementation. A module
obtained in an existing or derived source or object form (e.g., other separately
developed software obtained from another provider having appropriate competence in
needed capabilities or implemented as a framework in a runtime library of the
computational platform) may need to be software-encapsulated so as to conform to the
component interface specification.

Each module implementation should be augmented with associated information (e.g.,
comments) that (1) explains its primary constructs, assumptions, and dependencies and
(2) elaborates the component internal design with rationale on alternatives considered
and how constraints influenced that implementation, as may be relevant in making any
future changes.

Component Verification

The component verification element specifies the means used to determine the degree to
which the component implementation supports the responsibilities specified for it in the
component design, including satisfaction of relevant product quality criteria and
consistency with the interface specifications of referenced components. Means used to
verify the component and each associated module include directed peer and expert

 A module in source form comprises programming language constructs, defining data constructs and 2

processing logic (sequential and concurrent) intended to realize specified computational effects in
software object form.

ghc 4 11/2/23

DRAFT

reviews, analytic evaluations, and limited usage-based testing (which may require
implementing additional ancillary software that exercises each module’s capabilities).

Criteria to be met by each module will differ according to how its realization of
component capabilities is specified in the component design as differing. As a basis both
for clients to choose among modules and for evaluating the effectiveness of the product
design as a whole, this element should include an analytic evaluation of the relative
importance of each of the quality factors, the degree to which each of the component’s
associated modules satisfy them, and any differences in tradeoffs among factors made
in eacb module.

ghc 5 11/2/23

