
© 1999, PHS

Grady H. Campbell, Jr.

May 18, 1999

 Prosperity Prosperity
 Heights Heights
SoftwareSoftware

Adaptable Components

Copyright © 1999, Prosperity Heights Software. All Rights Reserved.

ICSE 99
Tutorial

© 1999, PHS

Goals for the Tutorial

• Explain the concept and motivation of Adaptable
Components

• Present alternate mechanisms for representing an
Adaptable Component

• Show how to create an Adaptable Component:
– by abstracting from a single-use component

– by unifying similar existing components

• Look beyond, to Domain-specific Engineering

© 1999, PHS

Objectives of Reuse

• Produce a product

– with better quality
– in less time

– using less detailed expertise

• Leverage an organization’s combined knowledge and
expertise.

• Provide a rapid prototyping capability:
– develop better understanding of a customer’s needs

– explore alternative solutions to a customer’s problem

© 1999, PHS

What Does Not Work

• A library containing thousands of single-use parts

• Text-based searching for a needed part

• Incentives to write or use ‘reusable’ parts more

• Generic parts, beyond current use

• Reworking a single-use ‘reusable’ part to suit a new
single-use need

© 1999, PHS

What Does Work

Adaptable Components in a product line context

• Reusable parts built for multiple use (tailorable to
different needs)

• Reuse based on an analysis of current and likely future
needs, viewing differences as deferred decisions

• Systematic reuse as a product line investment strategy

© 1999, PHS

Goals for Adaptable Components

• Represent any number of similar software components
with a single definition

• Mechanically retrieve/generate a particular component
instance by resolving deferred decisions

• Cost no more to develop than 1-3 individual components

© 1999, PHS

Topic Outline

• What is an Adaptable Component?

• Notations, General and Special

• Examples

• Exercise

• Summation

© 1999, PHS

Definitions

• Component: A fragment of a work product

• Component Family: A set of components that are
sufficiently similar to be described effectively by the same
abstraction

• Abstraction: A concept that characterizes any instance of
a family equally well

• Metaprogram: A program that generates instances of a
component family

• Adaptable component: A representation of a family
sufficient to specify a corresponding metaprogram

© 1999, PHS

A Usual Context for Reuse

• Writing a program that is somewhat similar to past
programs.

• The program is organized into a set of “components” for
modularity.

• Each component has a specified interface that other
components reference.

• Each component can be

– written from scratch
– reused, perhaps with changes, from past work.

When would reuse be the right choice?

© 1999, PHS

A Conventional View of Reuse

1. Find previously built components similar to what you
need.

2. Choose one that best matches what you need.

3. Change it so it that it does exactly what you need.

4. Save it for future reuse by others?

© 1999, PHS

Questions with this Approach

• Does the component you need exist and can you find it?

• Alternatively, do components similar to what you need
exist? Which one will be easiest to change to fit your
needs?

• Does the component you need work correctly? If you
have to change it, will it still work correctly?

• Does the component do things you don’t want? Can you
safely remove them?

• How long will all of this take and wouldn’t it be easier
just to write it yourself?

© 1999, PHS

Analysis

• Reuse ought to be routine for a reliable, cost-effective
software development process.

• A conventional approach to reuse
– is problematically opportunistic.

– makes the reuser do most of the work, within poorly
specified limits assumed by the developer.

– puts all risk on the reuser, without institutional
support. (“reuse to save money but if it doesn’t work
out it’s your problem”)

– never establishes why similar solutions are possible.

• A better conceived, less simplistic approach to reuse is
needed.

© 1999, PHS

Foundations

• E. W. Dijkstra, “On Program Families”, Structured
Programming, Academic Press, London, 1972, 39-41.

• D. L. Parnas, “On the Design and Development of
Program Families”, IEEE Trans. Software Eng. SE-2
(March 1976), 1-9.

• J. A. Goguen, “Parameterized Programming”, IEEE
Trans. Software Eng. SE-10, 5 (September 1984), 528-543.

• N. Dershowitz, “Program Abstraction and Instantiation”,
ACM Trans. Prog. Languages & Systems 7, 3 (July 1985),
446-477.

© 1999, PHS

A Basis for Effective Reuse

1. The only sound basis for reuse is an envisioned set of
similar products or components: a family.

2. Similarity implies both commonality and variability:
– Commonality is the basis for standardization (of work

products and process – for a domain).

– Variability characterizes the flexibility needed to
accommodate different needs.

3. Adaptability is an explicit representation of similarity:
– A characteristic set of deferred decisions distinguish

among the members of a family.

© 1999, PHS

Keys to Reuse Success

• Standardization: Avoid incidental differences between
similar reusable components.

• Easy (transparent) customization: Accommodate
essential differences needed to satisfy specific needs.

• Ownership: Guarantee that somebody knows how each
component works and is responsible for error fixes and
enhancements.

• Motivation: Create reusable components based on
expectations about future needs.

© 1999, PHS

Topic Outline

• What is an Adaptable Component?

• Notations, General and Special

• Examples

• Exercise

• Summation

© 1999, PHS

Parts of an Adaptable Component

• An abstraction: What is the intended purpose of these
components?

• Parameters (representing decisions): Why is there a need
for more than one of these components? How are they
different from each other?

• A definition: Given a set of parameter values, what are
the steps to create a corresponding component?

© 1999, PHS

The Role of Decisions

• Engineering is a decision-making process.

• An Adaptable Component shows how different ways to
resolve a set of decisions lead to different programs.

• Decisions represent:

– Customer requirements (needs and constraints).
– Engineering tradeoffs (such as cost, quality, ease of

change, esthetics, and feasibility).

• A focus on similar problems (a family) enables
standardization, reducing number, variety, and
complexity of decisions.

© 1999, PHS

Precursor Mechanisms

• Alternative implementations of standardized components

• Generalized (runtime-adaptive) components

• Partial-code generators (GUI, parsers, etc.)

• Word processor conditional/form letter mechanisms

• Compiler macros, flags, and switches

• Object-oriented language mechanisms: subclasses,
inheritance

• Templates (C++)/generics (Ada)

© 1999, PHS

Motivations for a
Special-Purpose Mechanism

• A set of similar components can be concisely represented
in one unified source.

• Form and content of instances is easily perceived.

• Adaptations are traceable entirely to parameters.

• Parameters can be expressed at a problem-level,
independent of solution details.

• Instance components can be derived mechanically.

© 1999, PHS

An Adaptable Component Notation

• Target text (common parts of components)

• MetaPrograms (variant parts of components)
– Name, to identify the abstraction

– Parameters, with which reusers control tailoring
– Definition (target text containing metaConstructs), to

show how to extract tailored instances
« program F (p1: text,

p2: (p3:text*, p4:text)?) «
some common text «p1» «
p2.p3
 ? «repeating text:«for p in p2.p3 ««p»»»
 : «alternate text:«p2.p4»»
 »
» »

© 1999, PHS

Parameters

• A text value referenced by the name p1
p1 : text

• Optional
p1 ?: text

• Symbolic (optional, non-valued)
p1 ?

• Multivalued
p1 : text *

• Structured or variant
p1:(p:text*, q:(q1?, q2:(r1:text*, r2:text)?))

© 1999, PHS

MetaConstructs

• Substitution:
« p1 »

• Selective substitution:
« p1.q.q1 ? «with q1» : «without q1» »

• Repetitive substitution:
« for i in p1.p «same but different due to «i».»»

• Metaprogram instantiation:
« F (p1: «in all work products»,

 p2: (p3:(«value 1», «value 2», «value 3»))
) »

© 1999, PHS

Writing an Adaptable Component

1. Write a prototypical instance component.

2. Write a top-level metaProgram based on major decisions.

3. Derive prototypical and 2-3 new instance components.

4. Refine the metaProgram to support extended/refined
decisions, based on experience in #3.

5. Extend the metaProgram based on likely future needs.

6. Write subordinate metaPrograms to manage complexity.

7. Regenerate old instances to verify and update, as needed.

© 1999, PHS

Topic Outline

• What is an Adaptable Component?

• Notations, General and Special

• Examples

• Exercise

• Summation

© 1999, PHS

Example Adaptable Components

• Sequenced collections

• Application-specific spreadsheets

• Specialized reuser tools

© 1999, PHS

A.C. Example 1
Sequenced Collections

A progression from the specific to the abstract:

1. Fixed-size, fixed-type stack

2. Fixed-size, variant-type stack

3. Variant-size, variant-type stack

4. Variant-size, variant-type, variant-access sequence
(stacks, queues, deques)

© 1999, PHS

F-size, F-type Stack

public class intStack {

static final int maxSize = 1024;
int data [] = new int [maxSize];
int size = 0;

public void add (int p1) throws stackFull {
if (size == maxSize) throw new stackFull ();
data [size++] = p1;
}

public int get () throws stackEmpty {
if (size == 0) throw new stackEmpty ();
return data [--size];
}

}

© 1999, PHS

« program stacks (name:text, datatype:text, maxsize:text) «
public class «name»Stack {

«datatype» data [] = new «datatype» [«maxsize»];
int size = 0;

public void add («datatype» p1) throws stackFull {
if (size == «maxsize») throw new stackFull ();
data [size++] = p1;
}

public «datatype» get () throws stackEmpty {
if (size == 0) throw new stackEmpty ();
return data [--size];
}

}
» »

F-size, V-type Stack

© 1999, PHS

V-size, V-type Stack

« program stack (name:text, datatype:text, maxsize?:text) «
public class «name»Stack {

«maxsize?««datatype» data [] = new «datatype» [«maxsize»]; int size = 0»
: «Vector data = new Vector () »»;

public void add («datatype» p1) {
data«maxsize?« [size++] = p1»:«.put (p1)»»;
}

public «datatype» get () throws stackEmpty {
if («maxsize?«size»:«data.size()»» == 0) throw new stackEmpty ();
return data«maxsize?« [--size]»:«.get ()»»;
}

}
» »

© 1999, PHS

V-size, V-type, V-access Sequence
« program lifoProcs (name:text, datatype:text, maxsize:text) «

public «datatype» getFirst () throws «name»Empty {
if («maxsize=«»?«size»:«data.size()»» == 0) throw new «name»Empty ();
return data«maxsize?« [--size]»:«.get ()»»;
}

» »
. . .

« program sequence (name:text, datatype:text, maxsize?:text, access:(fifo?,lifo?)) «
public class «name» {

. . .

public void add («datatype» value) { . . . }

«access.lifo ? ««lifoProcs (name:««name»», datatype:««datatype»»,
maxsize:««maxsize?««maxsize»»:«»»» »»»

«access.fifo ? ««fifoProcs (name:««name»», datatype:««datatype»»,
maxsize:««maxsize?««maxsize»»:«»»» »»»
. . .

}
» »

© 1999, PHS

A.C. Example 2
Application-Specific Spreadsheets

• Properties and functions of spreadsheets

• Decision specifications for a family of special-purpose
spreadsheets

• Implementation in the form of a configurable Java applet

© 1999, PHS

Steps in Using a Spreadsheet

• Set up

– Layout, labels, and cell formatting
– Cell content functions and data sources

– Applicable chart, analysis, and report types and
formats

• Use

– Enter raw data
– Generate charts, analyses, and reports

– Verify results

Objective of adaptability: Minimize set up by users

© 1999, PHS

Detailed Goals of Adaptability

• Add domain-specific extensions (formulas, analyses,
reports, procedures)

• Preverify consistency of system of computations

• Remove unneeded capabilities provided in generalized
tools

• Reduce breadth of required user skills and knowledge

• Tailor interface to fit skills and knowledge of a
specialized user community

• Standardize techniques across a user community

© 1999, PHS

A Special-Purpose Implementation

• Automate set up to create a spreadsheet tool tailored to a
particular user community’s needs

• Derived from Sun Java Spreadsheet applet example

• HTML file supplies applet parameter values that guide
tailoring

• Example families (subfamilies)

– Financial recordkeeping (income/expenses,
investments)

– Scheduling (tasks, personnel)

– Product tracking (orders, in-production, inventory)

© 1999, PHS

Set-Up Decisions

• Spreadsheet title

• Fixed geometry
– Row and column names

– Cell names

• Cell content

– Numeric value
– Formula (using row@column or cell names)

– Comment

• Fixed cell content type, fixed computations

mailto:row@column

© 1999, PHS

Sample HTML Source

<applet code="SpreadSheet.class" width=320 height=120>
<param name=title value="Income Statement">
<param name=columnNames

value="1990,1991,1992, ,Accum,1993, ">
<param name=rowNames value="gross,taxes,net ">
<param name=gross@1990 value="10000">
<param name=taxes@1990 value="1600">
<param name=taxes@1991 value="f'gross@1991'*0.22">
<param name=taxes@Accum

value="f'taxes@1990'+'taxes@1991'+'taxes@1992'">
<param name=net@1990 value="f'gross@1990'-'taxes@1990'">
<param name=net@1991 value="f'gross@1991'-'taxes@1991'">
<param name=net@1992 value="f'gross@1992'-'taxes@1992'">
<param name=taxes@Accum#name value="Prior Taxes">
</applet>

mailto:name=gross@1990
mailto:s@1990
mailto:s@1991
mailto:gross@1991
mailto:s@A
mailto:axes@1992
mailto:name=net@19
mailto:gross@1990
mailto:name=net@19
mailto:gross@1991
mailto:name=net@19
mailto:gross@1992
mailto:s@A

© 1999, PHS

Derived Spreadsheet

17200

1990 1991 1992 1993

Income Statement

gross

taxes

net 41000

50000

 6600

30000

1600

10000

Prior Taxes: f’taxes@1990’+’taxes@1991’+’taxes@1992’

Accum

 9000

234008400

53000

© 1999, PHS

A.C. Example 3
Specialized Reuser Tools

• A “generator” Adaptable Component (instances are
programs having a graphical interface for instantiating
some other Adaptable Component)

• Shown here: reuser interfaces to 2 Adaptable
Components whose instances are simple text documents

– Newspaper Jobs Listing (NJL)
– Customized Computer Order Invoice (CCOI)

© 1999, PHS

Steps Followed

0. Write the “generator” Adaptable Component (ACG)

1. Write a “target” Adaptable Component (ACT) {such as
NJL or CCOI}

2. Instantiate ACG, describing parameters expected by ACT,
to create Java program PT

3. Compile PT

4. Use PT to
– input parameter values for ACT

– instantiate ACT

© 1999, PHS

Interface Generated for NJL

© 1999, PHS

Interface Generated for CCOI

© 1999, PHS

Topic Outline

• What is an Adaptable Component?

• Notations, General and Special

• Examples

• Exercise

• Summation

© 1999, PHS

Exercise Purpose

• Think about why similar components are different:

– To fill different needs (essential differences)
– Due to different implementers (incidental differences)

• Think about how essential differences can be expressed
as deferred decisions

• Think about how a set of similar components can be
represented as an Adaptable Component

© 1999, PHS

Exercise Procedure

• Compare sample instances (simple Java code) for
similarities:

– Expense ledger
– Job assignment schedule

– Publications reference list

• Unify instances to create an informal Adaptable
Component (mark up one instance to show how other
instances match or differ).

• Define an abstraction and deferred decisions for your
Adaptable Component (propose a vocabulary for
distinguishing the samples as instances of a family).

© 1999, PHS

Guide to Comparing Instances

• Find similar fragments in any 2 instances:

– Are there similarities in structure or parts, ignoring
incidental differences such as naming?

– Are there similarities, allowing for consistent essential
differences such as data types?

– What editing actions would make the fragments the
same?

– Do different needs justify differences found?

• See whether each fragment occurs in other instances:

– Yes, a common element
– No, other essential or incidental differences

© 1999, PHS

Guide to Unifying Instances

• Incidental differences: Select best and eliminate
alternatives.

• Essential differences: Characterize equivalent editing
action

– Substitution: replacement with instantiator-provided
content, specific to each instance

– Selection: a choice among alternative predetermined
contents

– Repetition: repetition, with tailoring, of some
standard content

© 1999, PHS

Guide to Defining an Abstraction

• Identify a unifying concept:

– Characterize the set of sampled instances
– Generalize to include other likely instances

• Identify deferred decisions:
– Characterize decisions that match the abstraction

» Sample-derived decisions may be too solution-specific.

» How would a reuser want to express what they need?

– Group related decisions
– Mark up the Adaptable Component to show where

deferred decisions are referenced

© 1999, PHS

(Do the Exercise)

© 1999, PHS

Questions

• Can any other programs be built with the Adaptable
Component you have described? What are they?

• Suppose you wanted to add capabilities to the 3 sample
programs. What would you add? Which would be less
effort in this case:

– Modifying each of the sample programs as needed?
– Extending the Adaptable Component to build the

enhanced programs?

• Suppose you found an error in one of these programs.
Would it be better to fix that program or to fix an
Adaptable Component and regenerate the program?
Why?

© 1999, PHS

Topic Outline

• What is an Adaptable Component?

• Notations, General and Special

• Examples

• Exercise

• Summation

© 1999, PHS

Aspects of Adaptable Components

• Abstraction of a family of similar instances

• Deferred decisions that distinguish among instances

• A metaprogram that can generate family instances

• Used to retrieve a customized reusable component:
– Make decisions

– Generate instance
– Verify instance for intended use

– Modify decisions, instance, or Adaptable Component,
as appropriate

© 1999, PHS

Motivations for Adaptable
Components, Revisited

• Adaptable components support diversity and change:

– Effective reuse requires tailoring to specific needs
– Tailoring is decision-based and mechanical

• Repository-associated costs are minimized:
– Developer builds one component for multiple needs

– Storage space is a fraction of storing equivalent set of
instance components

– Reuser effort and risks reduced

• Maintenance of one Adaptable Component is easier:
– Errors fixed once

– Improvements available to all

© 1999, PHS

Beyond Adaptable Components:
Domain-specific Engineering

Standardization of the most effective solutions
to a class of similar problems

• Identify a product line business area whose customers
need similar products.

• Develop a shared understanding of how and why needed
products are similar.

• Create the means to produce standardized, customized
products rapidly.

• Transition systematically, with tailoring and incremental
improvement.

© 1999, PHS

The DsE Process

Domain
Engineering

Domain

Application
Product

Application
Engineering

Application Uses

Customer
Needs

Market and
Project Needs

Business
Objectives

© 1999, PHS

DsE Activities

• Domain Engineering:

– Standardize a product family, adaptable to deferred
requirement and engineering decisions.

– Establish a standard process for resolving deferred
decisions.

• Application Engineering:
– Resolve deferred decisions to match customer needs.

– Mechanically produce a product, adapted to resolved
decisions.

© 1999, PHS

A Domain Engineering Process

Domain Definition

Product Family
Engineering

Process
Engineering

Project Support

Domain
Management

© 1999, PHS

A Conventional
Application Engineering Process

Requirements
Assets

Design
Assets

Implementation
Assets

Domain Infrastructure

. . .

. . .

Requirements
Analysis

Design

Implementation

© 1999, PHS

A Streamlined
Application Engineering Process

Product
Specification
& Evaluation

Product
Generation

& Evaluation

Product
Distribution

Domain Infrastructure

Project Management

Application Modeling

Application Production

Delivery &
Operation Support

© 1999, PHS

Benefits of DsE

• Customer needs expressed in a standardized, abbreviated
form and terminology ensures clearer communication
and earlier discovery of unsupported needs.

• Quality improvements in the product family improve the
quality of all products.

• Process standardization fosters more predictable
schedules and cost estimates.

• Process streamlining, based on a product family, reduces
time and effort to deliver similar products.

• Problem and solution knowledge and expertise are more
easily shared and extended.

© 1999, PHS

For Additional Information on DsE
and Adaptable Components

Prosperity Heights Software

www.domain-specific.com

info@domain-specific.com
1 703 573 3139

GradyCampbell@acm.org

mailto:info@domain-specific.com
mailto:GradyCampbell@acm.org

