Prosperity
Heights
Software

ICSE 99
Tutorial

Adaptable Components

May 18, 1999

Grady H. Campbell, Jr.

Copyright © 1999, Prosperity Heights Software. All Rights Reserved.

Goals for the Tutorial

Explain the concept and motivation of Adaptable
Components

Present alternate mechanismsfor representing an
Adaptable Component

Show how to createan Adaptable Component:
— by abstracting from a single-use component
— by unifying similar existing components

L ook beyond, to Domain-specific Engineering

©199, PHS

Objectives of Reuse

Produce a product
—with better quality
—inlesstime
—using less detailed expertise

L ever age an organization’s combined knowledge and
expertise.

Provide arapid prototyping capability:
—develop better understanding of a customer’s needs
—explore alternative solutionsto a customer’s problem

©199, PHS

What Does Not Work

A library containing thousands of single-use parts
Text-based searching for a neaded part
|ncentivesto write or use ‘reusable’ partsmore
Genericparts, beyond current use

Reworking a single-use ‘reusable’ part to suit a new
single-use need

©199, PHS

What Does Work

Adaptable Componentsin a product line context

 Reusablepartsbuilt for multiple use (tailorableto
different needs)

 Reusebased on an analysisof current and likely future
needs, viewing differences as deferred decisions

o Systematic reuse asa product lineinvestment strategy

©199, PHS

Goals for Adaptable Components

* Represent any number of similar software components
with a single definition

 Mechanically retrieve/generatea particular component
Instance by resolving deferred decisions

e Cost nomoreto develop than 1-3 individual components

©199, PHS

Topic Outline

What isan Adaptable Component?

Notations, General and Special

Examples
Exercise

Summation

©199, PHS

Definitions

Component: A fragment of awork product

Component Family: A set of componentsthat are
sufficiently similar to be described effectively by the same
abstraction

Abstraction: A concept that characterizes any instance of
a family equally well

Metaprogram: A program that generatesinstances of a
component family

Adaptable component: A representation of afamily
sufficient to specify a corresponding metaprogram

©199, PHS

A Usual Context for Reuse

« Writing a program that issomewhat similar to past
programs.

 Theprogram isorganized into a set of “components’ for
modularity.

e Each component has a specified interface that other
components reference.

e Each component can be
—written from scratch
— reused, perhaps with changes, from past work.

When would reuse be the right choice?

©199, PHS

A Conventional View of Reuse

1. Find previoudy built components similar to what you
need.

2. Choose one that best matches what you need.
3. Changeit so it that it does exactly what you need.

4. Save it for futurereuse by others?

©199, PHS

Questions with this Approach

Does the component you need exist and can you find it?

Alternatively, do components similar to what you need
exist? Which onewill be easiest to changeto fit your
needs?

Does the component you need work correctly? 1f you
haveto change it, will it still work correctly?

Does the component do thingsyou don’t want? Can you
safely remove them?

How long will all of thistake and wouldn’t it be easier
just towriteit yourself?

©199, PHS

Analysis

 Reuseought toberoutinefor areliable, cost-effective
softwar e development process.

* A conventional approach to reuse
—Is problematically opportunistic.

—makesthereuser do most of the work, within poorly
specified [imitsassumed by the developer.

—putsall risk on thereuser, without institutional
support. (“reusetosave money but if it doesn’t work
out it’syour problem”)

—never establisheswhy similar solutions are possible.

e A better conceived, less simplistic approach toreuseis
needed.

© 199, PHS

Foundations

E. W. Dijkstra, “On Program Families’, Structured
Programming, Academic Press, London, 1972, 39-41.

D. L. Parnas, “On the Design and Development of
Program Families’, | EEE Trans. Software Eng. SE-2
(March 1976), 1-9.

J. A. Goguen, “Parameterized Programming’, |IEEE
Trans. Software Eng. SE-10, 5 (September 1984), 528-543.

N. Dershowitz, “ Program Abstraction and | nstantiation”,

ACM Trans. Prog. Languages & Systems 7, 3 (July 1985),
446-477.

©199, PHS

A Basis for Effective Reuse

1. Theonly sound basisfor reuseisan envisioned set of
similar products or components. a family.

2. Similarity implies both commonality and variability:

— Commonality isthe basisfor standardization (of work
products and process—for adomain).

—Variability charaderizesthe flexibility needed to
accommod ate different needs.

3. Adaptability isan explicit regoresentation of similarity:

— A characteristicset of deferred decisions distinguish
among the membersof afamily.

©199, PHS

Keys to Reuse Success

Standardization: Avoid incidental differences between
similar reusable components.

Easy (transparent) customization: Accommodate
essential differences needed to satisfy specific needs.

Ownership: Guaranteethat somebody knows how each
component worksand isresponsiblefor eror fixesand
enhancements.

Motivation: Createreusable componentsbased on
expectations about future needs.

©199, PHS

Topic Outline

What isan Adaptable Component?

Notations, General and Special

Examples
Exercise

Summation

©199, PHS

Parts of an Adaptable Component

e An abstraction: What istheintended purpose of these
components?

e Parameters (representing decisions): Why isthere a need
for morethan one of these components? How arethey
different from each other?

o A definition: Given a set of parameter values, what are
the stepsto create a corresponding component?

©199, PHS

The Role of Decisions

Engineering is a decision-making process.

An Adaptable Component shows how different waysto
resolve a set of decisions lead to different programs.

Decisions r epr esent:
— Customer requirements (needs and constraints).

— Engineering tradeoffs (such as cost, quality, ease of
change, esthetics, and feasibility).

A focuson similar problems (a family) enables
standardization, reducing number, variety, and
complexity of decisions.

©199, PHS

Precursor Mechanisms

Alternative implementations of standardized components
Generalized (runtime-adaptive) components

Partial-code generators (GUI, parsers, etc.)

Word processor conditional/form letter mechanisms
Compiler macros, flags, and switches

ODbj ect-oriented language mechanisms. subclasses,
Inheritance

Templates (C++)/generics (Ada)

©199, PHS

Motivations for a
Special-Purpose Mechanism

A set of similar components can be concisely represented
In one unified sour ce.

Form and content of instancesis easily perceived.
Adaptations aretraceable entirdy to parameters.

Parameter s can be expressed at a problem-level,
Independent of solution details.

| nstan ce comp onents can be derived mechanically.

©199, PHS

An Adaptable Component Notation

Target text (common parts of components)

M etaPrograms (variant parts of components)
— Name, to identify the abstraction
— Parameters, with which reusers control tailoring

— Definition (target text containing metaConstr ucts), to
show how to extract tailored instances

« program F (pl: text,
p2: (p3:text*, pd:.text)?) «
sone common text «pl» «
p2. p3
? «repeating text:«for p in p2.p3 ««p»»»
«alternate text: «p2. p4»»

»

©199, PHS

Parameters

A text valuereferenced by the name pl

pl : text

Optional
pl ?: text

Symbolic (optional, non-valued)

pl 2

Multivalued
pl : text *

Structured or variant

pl: (p:text™*,

g: C ql?, g2:(rl:text?™*,

r2:text)?))

©199, PHS

MetaConstructs

Substitution:
« pl »

Selectivesubstitution:
« pl.q.9ql 2 «with gl» : «w thout gl» »

Repetitive substitution:
« for i in pl.p «sane but different due to «i». »»

M etaprogram instantiation:
« F (pl: «in all work products»,
p2: (p3:(«value 1», «value 2», «value 3»))

) »

©199, PHS

Writing an Adaptable Component

1. Writea prototypical instance component.
2. Writeatop-level metaProgram based on major decisions.
3. Deriveprototypical and 2-3 new instan ce components.

4. Refine the metaProgram to support extended/r efined
decisions, based on experiencein #3.

5. Extend the metaProgram based on likely future needs.
6. Writesubordinate metaPrograms to manage complexity.

7. Regenerateold instancesto verify and update, as needed.

©199, PHS

Topic Outline

What isan Adaptable Component?

Notations, General and Special

Examples

Exercise

Summation

©199, PHS

Example Adaptable Components

» Seguenced collections
* Application-specific spreadsheets

o Specializad reuser tools

©199, PHS

A.C. Example 1
Sequenced Collections

A progression from the specific to the abstract:
1. Fixed-size, fixed-type stack

2. Fixed-size, variant-type stack

3. Variant-size, variant-type stack

4. Variant-size, variant-type, variant-access sequence
(stacks, queues, degues)

©199, PHS

F-size, F-type Stack
public classintStack {

static final int maxSize = 1024;
int data [] = new int [maxSize];
int size=0;

public void add (int p1) throws stackFull {
If (size == maxSize) throw new stackFull ();
data [size++] = p1;

}

publicint get () throws stackEmpty {
If (size == 0) throw new stackEmpty ();
return data[--Size];

}

©199, PHS

F-size, V-type Stack

« program stacks (name: text, datatype: text, maxsize:text) «
public class «<name»Stack {

«datatype» data [] = new «datat ype» [«maxsize»];
int size =0;

public void add («datatype» p1) t hrows stackFull {
If (size == «maxsize») throw new stackFull ();
data [sizet++] = p1;

}

public «datat ype» get () throws stackEmpty {
If (size==0) throw new stackEmpty ();
return data [--size];

}

»»

©199, PHS

V-size, V-type Stack

« program stack (name: text, datatype: text, maxsize?:text) «
public class «xname»Stack {

«maxsize?««datatype» data [] = new «datatype» [«maxsize»]; int size = O»
. «Vector data = new Vector () »»;

public void add («datatype» p1) {
datacmaxsize?« [size++] = pl»:«.put (pl)»»;

}

public «datat ype» get () throws stackEmpty {
iIf («maxsize?«size»: «data.size()»» == 0) throw new stackE mpty ();
return data«maxsize?« [--size]»: «.get ()»»;

}

» ©199, PHS

V-size, V-type, V-access Sequence

« program lifoProcs (name:text, datatype:text, maxsize:text) «
public «datatype» getFirst () throws «<name»Empty {
If («maxsize=«»?«size». «data.size()»» == 0) throw new «name»>Empty ();
return datakmaxsize?« [--size]»: «.get ()»»;

}

»»

« program sequence (name:text, datatype:text, maxsize?:text, access.(fifo?,lifo?)) «
public class «<name» {

public void add («datatype» value) { . . .}

«access.lifo ? ««ifoProcs (name: ««name»», datatype: ««datatype»»,
Maxsi Ze; ««MaxXSl Ze2««MaXSl ZE»»»; «<»»» »»»

«access.fifo ? ««fifoProcs (name: ««name»», datatype: ««datatype»»,
Maxs Zze: ««MaxXsi Ze2««MaXSl ZE»»»; «<»»» »»»

»»
©199, PHS

A.C. Example 2
Application-Specific Spreadsheets

* Propertiesand functions of spreadsheets

* Decision specificationsfor afamily of special-purpose
spreadsheets

* Implementation in the form of a configurable Java applet

©199, PHS

Steps in Using a Spreadsheet

e Setup

— Layout, labels, and cell formatting
— Cell content functions and data sour ces
— Applicable chart, analysis, and report types and

formats

Use
— Enter raw data
— Generate dharts, analyses, and reports
—Verify results

Objective of adaptability: Minimize set up by users

©199, PHS

Detailed Goals of Adaptability

Add domain-specific extensions (formulas, analyses,
reports, procedures)

Preverify consistency of system of computations

Remove unneeded capabilities provided in generalized
tools

Reduce breadth of required user skillsand knowledge

Tailor interfaceto fit skillsand knowledge of a
specialized user community

Standar dize technigques acr oss a user community

©199, PHS

A Special-Purpose Implementation

Automate set up to create a spreadsheet tool tailored to a
particular user community’s needs

Derived from Sun Java Spreadsheet applet example

HTML filesuppliesapplet parameter valuesthat guide
tailoring
Example families (subfamilies)

— Financial recor dkeeping (income/expenses,
Investments)

— Scheduling (tasks, personnel)
— Product tracking (orders, in-production, inventory)

©199, PHS

Set-Up Decisions

Spreadshest title

Fixed geometry
— Row and column names
— Cdl names

Cell content
—Numericvalue
— Formula (using row@column or cell names)
— Comment

Fixed cell content type, fixed computations

©199, PHS

mailto:row@column

Sample HTML Source

<applet code="SpreadSheet.class" width=320 height=120>
<param name=title value="Income Statement' >
<param name=columnNames

value="1990,1991,1992, ,Accum,1993, ">
<param name=rowNames value="gross,taxes,net ">
<param name=gross@1990 value="10000">
<param name=taxes@1990 vaue="1600">
<param name=taxes@1991 value="f'gross@1991'* 0.22">
<param name=taxes@Accum

value="f'taxes@1990'+ 'taxes@1991'+'taxes@1992"' >
<param name=net@1990 vaue="f'gross@1990'-'taxes@1990'"' >
<param name=net@1991 value="f'gross@1991'-'taxes@1991'"'>
<param hame—=net@1992 value="1'gross@1992'-'taxes@1992'" >
<param name=taxes@Accum#name value="FPrior Taxes"'>
</applet>

© 199, PHS

mailto:name=gross@1990
mailto:s@1990
mailto:s@1991
mailto:gross@1991
mailto:s@A
mailto:axes@1992
mailto:name=net@19
mailto:gross@1990
mailto:name=net@19
mailto:gross@1991
mailto:name=net@19
mailto:gross@1992
mailto:s@A

Derived Spreadsheet

Income Statement

Prior Taxes: f'taxes@1990'+'taxes@1991'+'taxes@1992’

1990 | 1991 | 1992 Accum | 1993
gross 10000| 30000(50000 53000
taxes | 1600| 6600| 9000
net 8400 | 23400| 41000

©199, PHS

A.C. Example 3
Specialized Reuser Tools

 A“generator” Adaptable Component (instancesare
programs having a graphical interface for instantiating
some other Adaptable Component)

e Shown here: reuser interfacesto 2 Adaptable
Components whose instances are simple text documents

— Newspaper JobsListing (NJL)
— Customized Computer Order Invoice (CCOI)

©199, PHS

Steps Followed

0. Writethe“ generator” Adaptable Component (AC)

1. Writea “target” Adaptable Component (AC;) {such as
NJL or CCOl}

2. Instantiate AC, describing parameter s expected by AC+,
to create Java program P

3. Compile P;

4. Use P to
—Input parameter valuesfor AC;
—Instantiate AC-

©199, PHS

Interface Generated for NJL

As-ol Oale: Monih: | August = Cay: (13
Avaibble Jobs
Caegory: | Frogrammer — Specialy:

Years Experence Neadaed? |3

Year: | 1998 -

C

il
-

Minimum Salary?

| coenai |

Maximum Salary?

42

© 199, PHS

Interface Generated for CCOI

Ord=r De=inil=

Platarm S=lecian: Campule Type: | SETWET = I S=rver Funcian: | Commuaicati v I

Campanern S=leclions: Primary Dish gigabpies: S=candary Dish ggabyles:
Remawvab= fadias 2 Gigabyte :I Priniar: 5oae :I

Ci=tfamer Infarmadan: Rare: |-|H'I'I= Kellar |

Sheed Addremm: | |
CiigSiat=!Zip: | | Telaphan= #: |
Tran=adlian Imarmmafan: Ag=niMame: ||:h'-"= Thamp=mn Ful Pric=:

P=gafiated Price:

© 199, PHS

Topic Outline

What isan Adaptable Component?

Notations, General and Special

Examples

Exercise

Summation

©199, PHS

Exercise Purpose

e Think about why similar components ar e different:
—To fill different needs (essential differences)
— Dueto different implementers (incidental differences)

 Think about how essential differences can be expressed
asdeferred decisions

 Think about how a set of ssimilar components can be
represented as an Adaptable Component

©199, PHS

Exercise Procedure

e Compare sampleinstances (smple Java code) for
similarities:
— Expense ledger
—Job assignment schedule
— Publicationsreference list

« Unify instancesto create an infor mal Adaptable
Component (mark up oneinstance to show how other
Instances match or differ).

e Definean abstraction and deferred decisions for your
Adaptable Component (propose a vocabulary for
distinguishing the samples as instances of a family).

©199, PHS

Guide to Comparing Instances

e Find similar fragmentsin any 2 instances:

— Aretheresimilaritiesin structure or parts, ignoring
Incidental differences such as naming?

— Aretheresmilarities, allowing for consistent essential
differences such as data types?

—What editing actionswould make the fragmentsthe
same?

— Do different needsjustify differencesfound?

e Seewhether each fragment occursin other instances.
—Yes, acommon eement
— No, other essential or incidental differences

©199, PHS

Guide to Unifying Instances

e |ncidental differences. Select best and eliminate
alter natives.

o Essential differences. Characterize equivalent editing
action

— Substitution: replacement with instantiator-provided
content, specific to each instance

— Selection: a choice among alter native predeter mined
contents

— Repetition: repetition, with tailoring, of some
standard content

©199, PHS

Guide to Defining an Abstraction

 ldentify a unifying concept:
— Characterizethe set of sampled instances
— Generalizeto include other likely instances

o |dentify deferred decisions:

— Characterizedecisonsthat match the abstraction
» Sample-derived decisons may be too solution-specific.
» How would areuser want t o express what they need?

— Group related decisions

—Mark up the Adaptable Component to show where
deferred decisions ar e r efer enced

©199, PHS

(Do the Exercise)

©199, PHS

Questions

e Can any other programs be built with the Adaptable
Component you have described? What arethey?

e Supposeyou wanted to add capabilitiesto the 3 sample
programs. What would you add? Which would beless
effort in this case:

— Modifying each of the sample programs as needed?

— Extending the Adaptable Component to build the
enhanced programs?

e Supposeyou found an error in one of these programs.
Would it be better to fix that program or to fix an
Adaptable Component and regenerate the program?
Why?

© 199, PHS

Topic Outline

What isan Adaptable Component?

Notations, General and Special

Examples

Exercise

Summation

©199, PHS

Aspects of Adaptable Components

« Abstraction of a family of ssimilar instances
« Deferred decisionsthat distinguish among instances
A metaprogram that can generate family instances

o Used toretrieve a customized reusable component:
—Makedecisions
— Generateinstance
—Verify instance for intended use

— Modify decisions, instance, or Adaptable Component,
as appropriate

©199, PHS

Motivations for Adaptable
Components, Revisited

e Adaptable componentssupport diversity and change:
— Effective reuse reguirestailoring to specific needs
— Tailoring isdecision-based and mechanical

* Repository-associated costs are minimized:
— Developer builds one component for multiple needs

— Storage space is a fraction of storing equivalent set of
Instance components

— Reuser effort and risksreduced

« Maintenance of one Adaptable Component iseasier:
— Errorsfixed once
— Improvements availableto all

©199, PHS

Beyond Adaptable Components:
Domain-specific Engineering

Standar dization of the most eff ective solutions
to aclass of smilar problems

| dentify a product line business area whose customers
need similar products.

Develop a shared understanding of how and why needed
productsaresimilar.

Createthe meansto produce standardized, customized
productsrapidly.

Trangstion systematically, with tailoring and incremental
Improvement.

©199, PHS

The DsE Process

Business __ | | Domain

Objectives Engineering \
l Market and

Project Needs

Domain
> Appllicati.on
Engineerin

Customer Application n

Needs Product

v
—@plication Uses>

©199, PHS

DsE Activities

e Domain Engineering:

— Standardize a product family, adaptable to deferred
requirement and engineering decisions.

— Establish a standard process for resolving deferred

decisions.

* Application Engineering:
— Resolve deferred decisionsto match customer needs.
— Mechanically produce a product, adapted to resolved

decisions.

©199, PHS

A Domain Engineering Process
Domain }

Management

[Domain Definition]

Product Famlly Process
Englneerlng Englneerlng

[roject Support]

©199, PHS

A Conventional
Application Engineering Process

Requirements | | Requirements
Assets | Analysis
Design . { ;]
Assets | Design

Implementation
Assets

............................ .[Implementation]

o

©199, PHS

Domain Infrastructure ---

A Streamlined

Application Engmeerlng Process

[PrOJect Management]

l

| Product
[Application Modeling | . Specification
l . & Evaluation

. . | Product
[Appllcatlon Productlon] Generation
J, & Evaluation

Delivery & | Product
Operation Support . Distribution

Domain Infrastructure

©199, PHS

Benefits of DsSE

Customer needs expressed in a standardized, abbreviated
form and terminology ensures clearer communication
and earlier discovery of unsupported needs.

Quality improvementsin the product family improvethe
guality of all products.

Process standar dization fosters more predictable
schedules and cost estimates.

Process streamlining, based on a product family, reduces
time and effort to deliver smilar products.

Problem and solution knowledge and expertise aremore
easi|ly shared and extended.

© 199, PHS

For Additional Information on DsE
and Adaptable Components

Prosperity Heights Softwar e

www.domain-specific.com
Info@domain-specific.com
1703 573 3139

GradyCampbell@acm.org

©199, PHS

mailto:info@domain-specific.com
mailto:GradyCampbell@acm.org

