
© 1999, PHS

Domain-specific Engineering

Domain Engineering

© 1999, PHS

Market and
Project Needs

Domain
Engineering

Domain-specific Engineering

Domain

Application
Product

Application
Engineering

Application Uses

Customer
Needs

Business
Objectives

© 1999, PHS

Understanding the Purpose of DE

What is the goal of Domain Engineering?
To institutionalize and improve an organization’s
ability to address the needs of a product line market

What is a product line market?

A set of customers having similar needs

How does Domain Engineering accomplish its goal?
By providing Application Engineering projects with a
capability for building application products more
effectively (according to organization objectives)

What is the product of Domain Engineering?
A domain and all associated work products

© 1999, PHS

What is a Domain?

Product
Family

Product

Product Line

Business Area

Project

Market

Customer
User

The knowledge (product family) and expertise (process)
required to build a particular type of product.

AE
Process

© 1999, PHS

Responsibilities of DE

• Define the strategic direction and capability of the
organization to address a product line market

• Institutionalize the knowledge and expertise upon which
the organization depends

• Give AE projects the ability to create products at a
minimum in cost, time, and divergence from need:

– Process and procedures

– Reusable components
– Tools

• Evolve domain capabilities as market needs change

© 1999, PHS

Domain Engineering Process

Domain Definition

Product Family
Engineering

Process
Engineering

Project Support

Domain
Management

© 1999, PHS

Domain Engineering Activities

Domain Management
Organize, plan, and direct domain efforts to achieve

business objectives
Domain Definition

Establish the focus and scope of the domain

Product Family Engineering
Develop assets and mechanisms for deriving tailored

instances of a product family

Process Engineering
Define a standardized application engineering process

and develop a supporting infrastructure
Project Support

Ensure that the domain meets business, project, and
market needs

© 1999, PHS

Domain Engineering Process

Domain Definition

Product Family
Engineering

Process
Engineering

Project Support

Domain
Management

© 1999, PHS

Domain Management

Context: Business objectives
Needed Expertise:

– Market characteristics

– Strategic business development, business area
management

– Application project management

Responsibility: Manage business area resources to achieve
business objectives

Work Product: Domain Plan
(Domain Master Plan, Practices and Procedures,
Domain Increment Plans)

© 1999, PHS

Domain Management
Process

Manage domain
development and

evolution

Set domain
practices and
procedures

Develop domain
increment

Domain
Master Plan

Practices and
Procedures

Domain
Increment Plan

© 1999, PHS

Domain Plan
Domain Master Plan

– Domain Objectives (strategic mission and vision)
– Market projections (current and future customer

needs and opportunities)

– Domain life cycle strategy (conception,
elaboration, expansion, consolidation)

– Resource and automation profiles (assets
available for meeting domain objectives)

– Domain development profile (domain increments
in overview)

– Domain status (assessment of technical progress
and market experience versus expectations)

An overview of the scope and life-cycle for a domain
suited to business objectives for a targeted market

© 1999, PHS

Domain Plan
Practices and Procedures

– Establish administrative practices
– Select preferred development methods

– Define documentation standards
– Identify guidelines for project management and

control
– Institute quality assurance mechanisms

– Institute configuration management procedures

Preferred strategy: Adapt current organizational standards

Standards an organization intends to follow in
developing a domain.

© 1999, PHS

Domain Plan
Domain Increment Plan

– Analyze risks (potential threats and mitigation in
progressing toward allocated domain objectives)

– Define increment objectives consistent with
domain objectives and identified risks

– Schedule tasks, allocating resources over time to
achieve measurable goals consistent with
increment objectives

– Monitor progress to plan and document
deviations in terms of cause, implications, and
disposition

A plan for completing an increment of the domain
master plan

© 1999, PHS

Domain Management
Managing a Domain Increment

Evaluate
Risks

Set product &
risk objectives

Allocate
resources

Monitor progress
to schedule

Issues

Schedule

Objectives

Risk
Analysis

Domain
Master Plan

© 1999, PHS

A Notional Example Domain

Product category: List management
Examples

– Small business or personal expense records
– Publication references

– Task assignments
Business objective: Rapid, low-cost provision of a diverse

product line of simple list management products

Goals
– Ability to customize product features over a range of

options suited to likely uses by an individual

– Less than two hours of effort to produce a defect-free
customized product

© 1999, PHS

Domain Engineering Process

Domain Definition

Product Family
Engineering

Process
Engineering

Project Support

Domain
Management

© 1999, PHS

Domain Definition

Context: Domain Plan
Participants:

– 2-3 management and marketing/sales representatives

– 3-5 technical managers and lead engineers
Needed Expertise:

– Business strategy and market trends

– Customers’ needs
– Current and potential solutions

Responsibilities:

– Refine product line scope and focus
– Establish terminology

– Characterize defining product similarities

© 1999, PHS

Domain Definition

Work Product: Domain Definition
(Domain synopsis, Legacy products, Domain glossary,
Domain assumptions, Decision model)

© 1999, PHS

Domain Definition
Domain Synopsis

An informal statement of domain scope
– Describe any product in the domain

– Start with 1 sentence, expand up to 2 pages
– Use and refine the Domain Glossary

– Reflect a concensus view of domain experts
– Establish minimum criteria for whether a proposed

product fits in the domain

© 1999, PHS

Example

Domain Synopsis
The List Management (LM) domain is a family of products for

maintaining a list of a designated type of asset or activity description.
Each product is customized to represent information as attributes
specific to a particular asset or activity type.

Each LM product is intended for use by an individual in support of the
need to track and manage the status of corresponding assets or
activities. The LM domain provides the capability to construct an
LM product customized to the attributes associated with any single
asset or activity type. Managed assets/activities may be further
classified based on the values of key attributes that enable/disable the
inclusion of other informational attributes.

Each LM product will provide mechanisms for adding and removing
asset/activity instances and for modifying associated attributes. An
LM product will present asset/activity lists in an order appropriate to
the type of asset or activity.

© 1999, PHS

Domain Definition
Legacy Products

– Analyze to understand the concepts, content, and
form and structure of products within the domain

– Use work products as a source of raw material from
which to construct domain work products

– Derive or verify relevant information through the
focused application of reverse engineering techniques

Existing products that exemplify important features of the
domain as a product family

© 1999, PHS

Domain Definition
Domain Glossary

– Identify significant terms and phrases
– Note and clarify any redundant or ambiguous terms

– Establish a consistent set of terms as preferred
standard terminology

– Correlate alternatives (of other organizations) to
preferred terminology

– Characterize aggregate concepts and connections
among terms

– Provide references to primary and secondary source
materials

Definitions and references for concepts and terminology
having significance for domain experts

© 1999, PHS

Example

Domain Glossary
Asset - A physical object whose instances are tracked with an LM

product.

Activity - A time-spanning effort whose instances are tracked with an
LM product.

Attribute – A data value associated with an asset or activity.

Description - A set of key and informational attributes that are sufficient
to identify and determine the status of an asset/activity.

Informational attribute – An attribute that provides additional
information about an asset or activity.

Key attribute – An attribute that can be used in unambiguously
determining the category or identity of an asset or activity.

© 1999, PHS

Domain Definition
Domain Assumptions

– Consider how products – past, current, and future –
are alike (commonality assumptions), emphasizing
observable features

– Analyse each commonality assumption to discover
differences among products (variability assumptions)

– Analyse product subsets defined by each variability
assumption to discover additional commonality
assumptions

– Identify deferred, excluded, and unsupported features
as commonalities

– Document each identified assumption with an
informal description and justification

Defining assumptions that describe and justify how
products are similar

© 1999, PHS

Types of Domain Assumptions

Commonality: A way in which a set of products are alike
Commonality Assumption:

A feature common to a set of similar products (possibly a subset of a
larger family)

Variability: A way in which a set of similar products differ
Variability Assumption:

A feature that differs within a set of similar products (characterizing a
subfamily of products that are similar according to this assumption)

Exclusion: A feature that characterizes products which
would otherwise be in the domain but are outside due to
this (a commonality associated with a particular
variability option)

© 1999, PHS

Sample Commonality Assumptions

For cellular telephones,
– operation is manual via a keypad. (justif: low cost, responsive)

– status information is displayed in a text panel. (justif: f lexible,
adequate for low bandwidth)

– if sold in the U.S., 220 volt chargers are not offered. (justif: use
outside U.S. is precluded by comm. system incompatibilities)

For automobiles,
– there is onboard fuel storage. (justif: must be indep. mobile)

– there is an engine which converts fuel to mechanical and
electrical energy. (justif: different forms better for each)

– with gasoline and diesel powered engines, a battery supplies
electrical power when the engine is off. (justif: need alternative
to running engine for low power)

– if sold in Finland, air conditioners are not offered. (justif: no
demand to justify logistics)

© 1999, PHS

Sample Variability Assumptions

For cellular telephones
– displayed text is in one of several different languages (justif: the

targeted market is international and multilingual)
– if sold in the U.S., text can be preset to display in either English

or Spanish (justif: only these languages offer a suff icient market
opportunity in the U.S.)

For automobiles
– engines are powered by either gasoline, diesel, or electricity

(justif: these are the only fuels today that are suff iciently
efficient, distributable, transportable, and safe)

– for electicity-powered engines, electricity is stored in batteries or
fuel cells (justif: use-on-demand requires generation when
convenient with storage in one of these media for later use)

© 1999, PHS

Example

Domain Assumptions
C: An LM product concerns a single specific type of asset or act ivity.

C: An LM product identifies specific assets/activities with a set of key
attributes.

C: An LM product provides a mechanism for the addition of
asset/activity instances.

C: An LM product displays asset/activity instances in a predictable
order.

C: An LM product provides a mechanism for sett ing the value of each
attribute of an asset/activity instance.

C: LM products do not support concurrent access by multiple users to
a particular set of asset/activity instances.

C: LM products do not support multi-valued attributes.

V: Attributes differ according to the type of asset/activity managed.
V: A date attribute can be restricted to past or future dates.

© 1999, PHS

Domain Definition
Decision Model

– For each variability assumption, specify one or more
decisions by name and value type

– Aggregate and name sets of related decisions
– Identify dependencies and constraints on decisions

that arise when other decisions are resolved

– Evaluate completeness by adequately describing
different products uniquely with decisions

– Add other questions which provide any information
that a knowledgeable engineer would need to build a
complete product

A set of decisions that are sufficient to distinguish among
the members of a product family and identify a particular
product in the domain

© 1999, PHS

Example

Decision Model
Title: String
Usage: (planning, recordkeeping)?

Keys: (name:String, type:(Text, Date)?)* {V1}

Attributes: (name:String, type:(Text, Date:(past?, future?),
Num, Money)?)* {V1}

Order: String* {names of Key attributes} { not impl. }
ItemsRecur? {some items are variants of other items}

Notation
* repetition (multiple values) String a simple text value item

? optional or a choice (. . .) a set of value items

{ . . . } a comment

© 1999, PHS

Domain Engineering Process

Domain Definition

Product Family
Engineering

Process
Engineering

Project Support

Domain
Management

© 1999, PHS

Product Family Engineering

Context: Domain Definition
Participants: Technical managers and engineers
Needed Expertise:

– Customer problems
– Solution techniques

Responsibilities:

– Specify the problems that Application Products solve
– Define the structure and composition of Products

– Construct components and mechanisms to be used in
creating Products

Work Product: Product Family
(Requirements, Design, Implementation)

© 1999, PHS

Definitions

• Method - Guidance and criteria that prescribe a
systematic, repeatable technique for performing an
activity

• Method suite - A set of methods that provide a consistent
approach for performing a set of related activities

• Model - A representation of specific aspects of a system
that permit answering particular questions

• Work product - Any tangible artifact resulting from an
activity

© 1999, PHS

Product Family

– Use domain assumptions as a guide to family content

– Analyze legacy products:
» to improve domain understanding or answer questions

» to acquire raw materials as a basis for domain work products

– Create a product family by applying methods for
creating a product:

» Requirements: What does the product do?

» Design: How is the product structured?

» Implementation: How does the product work?

» Verification: Does the product work correctly?

– At any point of uncertainty, changeability, or
diversity, annotate for decision-controlled tailoring

A representation of a set of similar products from which an
individual product can be extracted by resolving associated
decisions

© 1999, PHS

Examples of Method Suites

Methods for creating a product
– Requirements: what does the product do?

– Design: how is the product structured?
– Implementation: how does the product work?

– Verification: does the product work correctly?
Examples of method suites

– Real-Time Structured Analysis and Design (RTSA/D)
– Software Cost Reduction (SCR)

– Concurrent Design Approach for Real-Time Systems
(CODARTS)

– Cleanroom

– Objectory

© 1999, PHS

Product Family
Requirements

– Develop usage scenarios to characterize customers’
problems.

– Describe the application:
» Concept (purpose and objectives)

» Context (environment of use or operation)

» Content (externally detectable behavior & information content)

» Constraints (environmental, performance/reliability, etc.)

– Specify each AE work product:
» Purpose and objectives

» How used

» Constraints on form or content

– Use annotations to record how decisions representing
different needs result in different requirements.

The capabilities and properties that products must exhibit
to be accepted as solutions by customers.

© 1999, PHS

Example

Product Family Requirements - Application Description
Outputs : <title>Report

Inputs : <title>Data

Functions

Display the active set of <title> items in a tabular format.
Provide an operation to add new <title> items, including the values
of its attributes.

The attributes of an <title> item are:

<for i in items <its <i> value

>>

<values-recur ? <Provide an operation to add a new <title> item
which is a variant of an existing <title> item.>>

Provide an operation to deactivate an item; deactivated items are
omitted from the <title> display.

© 1999, PHS

Product Family
Design

– Specify the architecture (internal organization) of
applications

» Identify needed components (static structure)

» Specify runtime tasking and communications (dynamic structure)

» Specify how components interact (dependency structure)

– Create annotated outlines for document and testing
work products

– Specify the interface and adaptability of components
identified in the architecture

– Use annotations to specify how decisions control
tailoring of the architecture and components

A design for products that satisfactorily resolves all
conflicts among needs and constraints.

© 1999, PHS

Example

Product Family Design : Architecture

Class Set

<title>Tracker : Frame

<title>
sPanel : Panel

inputDialog : Dialog

dateDialog : Dialog

StringSelector

<title>Tracker <title>

inputDialogsPanel

StringSelector

dateDialog

Dependency Structure

© 1999, PHS

Example

Product Family Design : Component Interface
Component family name: dateDialog

Variability specification:

Range : (past?, future?) { indicates whether dates are restricted }

Interface specification:
 Name: <Range.past?<past>;<Range.future?<future>;...>DateDialog

 Types: Date { internal representat ion of a date }

 Programs:

UserSelect (Date):Date {allow a user to specify or change a Date}

Today ():Date {get today’s date}

ToString (Date):String {convert a Date into a displayable form}

SameDay (Date, Date):Boolean {test whether 2 dates are the same}

EarlierDay (Date, Date):Date {get the earlier of 2 dates}

© 1999, PHS

Example

Product Family Design : Design Mapping

» Architecture mapping: how to adapt the
Product Family Architecture

» Component mapping: How to select Adaptable
Components to instantiate the Product Family
Architecture

» Decision mapping: How to determine the
values of Adaptable Components’ parameters

© 1999, PHS

Product Family
Implementation

– Implement component families as specified by the
product family design

» Design the internal structure of an Adaptable Component
conforming to a component design

» Implement the Adaptable Component

» Verify the Adaptable Component to the component design

– Fill in annotated AE document work product outlines

– Develop outlined AE testing work products
– Document or implement procedures to generate an

application and associated AE work products by
selecting, instantiating, and composing Adaptable
Components

A set of components and composition procedures that are
sufficient to enable deriving any describable product.

© 1999, PHS

Two Views of a Component Family

a set of similar
components

a

b

c

d

e

f

g

h

i

j

kl
m

n

o

p

qs

r

t

u
v

w

(created)

(derived)

a family

(created)

(adapt)

p1 p2 ...
pn

a b
...

w

a set of similar
components

parameters
of variation

(not yet
created)

© 1999, PHS

Example

Product Family Implementation: Adaptable Component
(CCOS order sheet)

<{customized com puter order specification system}>
<program ccos (

platform :(handheld, portable, desktop, server:(files, calc, comm)?)?,
com ponents:(disks:(primary:text, secondary?:text, rem ovable?:(mega, giga)?),

printer?:(inkjet, laser)?),
customer:(name:text, street:text, city_state_zip:text, telephone?:text),

xactn:(agent:text, price:text, discount:text, date:text)
) <

The following order has been authorized for subm ission to the ACME Custom ized
Computer Order Specification System in keeping with instruction 98-38A76-B,
Guidance to Regional Sales Agents for Customized Product Orders. The customer,
<custom er.name>, hereafter identified as " Customer", accepts that delivery is
contingent on availability of requisite constituent and added components and
that the order cannot be modified without the mutual consent of ACME Computers

Limited subsequent to transm ission of this specification to the ACME Manufacturing
Facility.

Based on approved Price List <{pl_ID ()}>, Custom er has requested an ACME <
platform.handheld ? <Runaround Companion>><
platform.portable ? <Workanywhere PRO 3500>><
platform.desktop ? <OfficeBase 550>><
platform.server ? <NETHost 2000>>

computer<platform.server ? < configured <
platform .server.files ? <for shared data storage and access>><
platform .server.calc ? <as a high perform ance computation server>><
platform . server.comm ? <to provide high-speed com munications>>>>.

In support of this capability, additional included components include:
<platform.server ? <

• <com ponents.disks.prim ary> Gigabytes PowerFlex Optical Disk
Drives

• 100 DataCom m 56Kb modem devices>
: <
• 1 DataCom m 56Kb modem device<
platform .desktop ? <
• 1 SilverChrome Flatscreen Display> : <

• Standard keyboard and display>><
com ponents.disks.secondary ? <
• <com ponents.disks.secondary>-Gigabyte Firestorm Disk Drive>><
com ponents.disks.removable ? <
• <com ponents.disks.removable.mega ? <100-Megabyte Sweeper

rem ovable disk drive>

: <<components.disks.removable.giga ? < 2-Gigabyte
Eagle removable disk drive>>>>>>>><

com ponents.printer.inkjet ? <
• RapidPrint inkjet printer>><
com ponents.printer.laser ? <
• RapidPrint laser printer>>

Agreed upon price is $<xactn.price>, payable upon delivery of the specified
custom configured computer. This price represents a <xactn.discount>% discount.

Upon completion of manufacture, the described com puter will be delivered by
Express Delivery Service to:

<customer.nam e>
<customer.street>

<customer.city_state_zip>
<custom er.telephone ? <Customer can be contacted at <

customer.telephone> to arrange delivery.>>

Accepted on <xactn.date>
 <customer.nam e> <xactn.agent>

>>
<{prototypical instantiation: <

<ccos (platform :(portable),
com ponents:(disks:(primary:<50>, , removable:(mega))),
customer:(name:<James Resner>, street:<223 Argot Way>,

city_state_zip:<Detroit City, SD 51734>),
xactn:(agent:<Joe Wilson>, price:<4800>, discount:<12>, date:<December 14,

1997>)

)>
>}>

© 1999, PHS

Example

Product Family Implementation: Generation Procedure

String temp;

temp = platform.getSelectedItem ();

resultText += "platform:("

 + (temp.equals ("Handheld") ? "handheld"

 : temp.equals ("Notebook") ? "portable"

 : temp.equals ("Desktop") ? "desktop"

 : temp.equals ("Server") ? "server" : "");

if (temp.equals ("Server")) {

temp = svrtyp.getSelectedItem ();

resultText += ":("

 + (temp.equals ("File Storage") ? "files"

 : temp.equals ("Computation") ? "calc"

 : temp.equals ("Communications") ? "comm" : "")

 + ")";

}

resultText += ")," + eol;

resultText += " components:(disks:(primary:" + LEsc +
diskpri.getText () + REsc + ", ";

temp = disksec.getText ();

if (temp.equals ("")) ;

else resultText += "secondary:" + LEsc + temp + REsc;

temp = diskrem.getSelectedItem ();

if (temp.equals ("none")) ;

else resultText += ", removable:("

 + (temp.equals ("1 Megabyte") ? "mega"

 : temp.equals ("2 Gigabyte") ? "giga" : "")

 + ")";

resultText += ")";

temp = prntr.getSelectedItem ();

if (temp.equals ("none")) ;

else resultText += ", printer:("

+ (temp.equals ("Inkjet") ? "inkjet"

: temp.equals ("Laser") ? "laser" : "")

+ "), ";

resultText += ")," + eol;

resultText += "customer:(name:" + LEsc + custname.getText () +
REsc;

resultText += ", street:" + LEsc + custstrt.getText () + REsc;

resultText += ", city_state_zip:" + LEsc + custcsz.getText () +
REsc;

temp = custtel.getText ();

if (temp.equals ("")) ;

else resultText += ", telephone:" + LEsc + temp + REsc;

resultText += ")," + eol;

resultText += "xactn:(agent:" + LEsc + agent.getText () + REsc;

resultText += ", price:" + LEsc + finalprice.getText () + REsc;

resultText += ", discount:" + LEsc + (100-(int)((Float.valueOf
(finalprice.getText ()).floatValue ()/Float.valueOf
(fullprice.getText ()).floatValue ())*100)) + REsc;

resultText += ", date:" + LEsc + "January 1, 1998" + REsc;

resultText += ")" + eol;

© 1999, PHS

Example

Product Family Implementation: Generation Procedure
(Generated MetaProgram Instantiator)

«»

«include "pattern"

»« ccos (

platform:(handheld),

components:(disks:(primary:«2.3»,)),

customer:(name:«», street:«», city_state_zip:«»),

xactn:(agent:«», price:«0», discount:«100»,

date:«January 1, 1998»)

)»

© 1999, PHS

Domain Engineering Process

Domain Definition

Product Family
Engineering

Process
Engineering

Project Support

Domain
Management

© 1999, PHS

Process Engineering

Context: Domain Definition, Product Family
Needed Expertise:

Analyzing, designing, and documenting engineering
processes and procedures

Building and documenting software tools
Responsibility: Define a standardized Application Engineering

process for the domain

Work Product: AE Process (Requirements, Infrastructure)

© 1999, PHS

AE Process
Requirements

A specification for how application engineering projects
should operate, given domain capabilities

– Define the activities, work products, and work flow
for an Application Engineering process.

» Document the current AE process

» Identify externally imposed work products

» Define a revised AE process by combining, eliminating, or
simplifying steps through reuse or tool support

– Define a dialog for creating an application model to
describe a needed product.

» Define forms for specifying related sets of decisions

» Order form access based on specified Decision Model constraints

© 1999, PHS

Example

Process Requirements
Current process: waterfall with informal requirements and design,

instance coding, and ad hoc testing
Improvements:

– Generate family-based requirements and design documents

– Generate family-based instance code

– Generate family-based test suite for first level testing

Steps:

– Specify a decision-based application model

– Generate instance documents, code, and tests

– Evaluate generated work products for needed application model
changes

– Apply minimal handtailoring to achieve customer acceptance

– Baseline the application model and required hand changes

– Report short-falls to Domain Engineering

© 1999, PHS

AE Process
Infrastructure

– Document the AE Process in the form of
organizational policies and procedures

– Create a detailed domain user’s guide for application
engineers to follow in using the domain

– Develop automated support for the process
– Create training courses for instructing application

engineers in proper domain practices

– Provide materials (tools and manuals) for deploying
and supporting AE Projects in use of the domain

Documentation and tools for the AE Process as specified in
AE Process Requirements

© 1999, PHS

A Minimal Application Engineering
Environment

• A tool for interactive dialogs (to create, store, view, and
update Application Models)

• File-based storage for Adaptable Components

• A tool to instantiate work product component families
(Adaptable Components) using an Application Model

• A tool to compose (e.g., compile and link) instantiated
components into deliverable work products

© 1999, PHS

Example

AE Process : Application Engineering Environment
• A domain-specific (Java-implemented) tool for application model

definition
• MTP plugin for Adaptable Component instantiation

• MTP-instrumented text and Java code files representing Adaptable
Components for the domain

• CodeWarrior Integrated Development Environment to select,
instantiate, and compose (or compile and link) Adaptable
Components into work products

© 1999, PHS

Domain Engineering Process

Domain Definition

Product Family
Engineering

Process
Engineering

Project Support

Domain
Management

© 1999, PHS

Project Support

Context: Domain Definition, Product Family, AE Process
Needed Expertise:

– Verification and validation techniques

– Training delivery
– Customer support

Responsibility: Ensure that the domain is effective both for the
business and for client AE projects
(Domain Verification, Domain Validation, Domain Delivery)

© 1999, PHS

Project Support
Domain Verification

– Verify adherence to management-prescribed
standards.

– Verify the Domain Definition to domain objectives.

– Verify consistency of Product Family Engineering
work products

– Verify consistency of Process Engineering work
products.

– Verify Product Family/AE Process compatibility and
compliance with the Domain Definition.

– Document problems for DE correction.

An independent evaluation of the consistency,
completeness, correctness, and quality of Domain
Engineering work products.

© 1999, PHS

Project Support
Domain Validation

– Evaluate satisfaction of business objectives.

– Evaluate the quality and effectiveness of the Domain
from the perspective of current and near-future AE
projects.

– Use the Domain to build test applications that require
new, improved, or corrected Domain capabilities.

– Use the Domain to build a set of standard applications
to evaluate derived attributes (such as performance,
reliability, safety, availability, usability).

– Document problems for DE correction.

An independent evaluation of the effectiveness and utility
of the integrated Domain product.

© 1999, PHS

Project Support
Domain Delivery

– Transport and install the validated Domain for each
AE project

– Assist AE projects in the understanding and proper
use of the specified AE process and associated
Domain capabilities.

– Document needed Domain improvements and
evolution based on current AE project experiences
and expected future customer and project needs.

Assistance to AE projects to enable effective use of Domain
capabilities to best meet project objectives.

