SOFTWARE ARCHITECTURE & ENGINEERING, INC.
TECHNOLOGY ROUNDTABLE

JULY 6, 1982

"The Software Cost Reduction (SCR) Project
of the Naval Research Laboratory (NRL)"

NRL Principal Investigator: D. L. Parnas

Moderator:

Grady Campbell



CONTEXT OF PROJECT

Sponsor: Naval Weapons Center, China Lake

Navy A-7 Operational Flight Program (OFP)

IBM System 4 PI Model TC-2 Computer

16 K 16-bit memory

22 hardware sensor/effector devices

Primary (real-time) functional modes:
Navigation

Weapon Delivery



PROJECT OBJECTIVES
Investigate methods for reducing costs of
software maintenance
Evaluate the use of software engineering techniques

Evaluate development costs in designing for ease
of change

Evaluate run-time costs of using software englneerlng
techniques in real-time systems

Provide a model for future software development
projects



APPROACH

Develop
Requirements (existing OFP)
Design (apply software engineering techniques)
Implement

Document
Products of each development phase
Techniques used

Review
Peer
Expert/user

Evaluate

Tests on A-7 simulator - correctness to
requirements

Tests on A-7 simulator - performance
Sponsor ease-of-change



REQUIREMENTS PHASE

APPROACH

Preparation
Identification

Formal specification

SUCCESSES

ISSUES



PREPARE FOR REQUIREMENTS PHASE

Identify questions that characterize all information needed.

Define specification document structure to achieve "separation

of concerns."

Define documentation conventions/notations:
- templates for description completeness
- bracketing of symbolic names

- condition/event tables



IDENTIFY REQUIREMENTS

Determine available sources:
- interviews with application experts
- interviews with hardware experts
- interviews with users
- user documentation
- programmer documentation
- investigation of existing program behavior

- hardware specifications

Use sources to answer questions
Use answers to refine and expand question set
Use comments from document review to refine and expand

question set



DOCUMENT REQUIREMENTS

Define:
- hardware constraints
- input/output data items
- external modes of operation
- functions (output generators)
- timing and accuracy constraints on functions
- undesired events and response
- useful subsets

- fundamental assumptions/potential changes

Identify questions to focus expertise of review audiences.
Record discrepancies found in reviews

Use review results to revise.



SUCCESSES

Focus on external behavior

Separation of concerns to focus expertise and for ease of
document change.

Interaction via conceptual data items
Explicit source of requirements for design guidance

Reliance on requirements document for design to keep it
valid as system definition.

Formal presentation for clarity and consistency

Preformulation of questions to prevent deferral of
hard issues

Explicit fundamental assumption and potential change sets
to aid completeness

Subset and potential change identification to allow design
for each of change.

Review process to allow errors and misconceptions to be
discovered early



ISSUES

Omission of system level description and use documentation.
Lack of explicit completeness in event/condition tables.

Difficulty in identifying system modes for user separation
of concerns.

Failure to address actions at mode transition directly.
Ambiguity in event table semantics

Duality of events and conditions

Applicability to new systems

Applicability to larger systems



DESIGN PHASE
Information hiding and modules
Module structure design
Module interface design
Module internal design
Uses hierarchy and subsets
Successes

Issues



Module:

INFORMATION HIDING AND MODULES

a programming work assignment; a unit of change;

a set of closely related programs.

Goal of information hiding (for multiperson, multiversion

software systems) :

difficulty of change should be appropriate to the

likelihood of change

Approach to information hiding:

Module

identify system details that can change; each such
detail is known as a "secret"

a module is defined to implement each secret;

secrets which cannot change independently belong

in the same module

design the interface to each module so that it
reveals only assumptions that are unlikely to change;
the implementation of its secrets are hidden

design the implementation of each module so that

it uses no information about any other module's

implementation

structure: the decomposition of the system into modules.



A-7 MODULE STRUCTURE

Hardware hiding
Extended computer (EC)

Device interface (DIM)

Behavior hiding
Function driver (FD)

Shared services (SS)

Software decision
Application data type (ADT)
Physical model (PM)
Data banker (DB)
- System generation (SG)

Software utility (SU)



MODULE INTERFACE DESIGN

Introduction - role of the module
Fundamental assumptions

Assumptions about undesired events
Access program descriptions

Access program effects

Additional events signalled

Local data types provided

Dictionary of terms used

System generation parameters provided

Information hidden



MODULE INTERNAL DESIGN

Module decomposition

OQutput produced

Function definition (event/condition tables)
- execution criteria
- value determination

Local dictionary

Mapping to requirements

Mapping to modules for interface terms referenced

Other implementation references

Timing and acburacy constraints

Secondary secrets

Design issues



USES HIERARCHY AND SUBSETS

"Uses": program A uses program B if the fulfill-
ment of A's specification requires

the presence and correct execution of B.

Purpose of uses hierarchy:

to identify possible program subsets

Purposes of subsetting:
- for incremental implementation and testing
- for reduced operational capability

- for alternative system versions

Characteristics of a subset:
= performs a subset of full system functions
- results from removing distinct sections of
code and data structures with no other
modification
- Uses resources comparable to a system designed

to perform only that subset



SUCCESSES

Concise, explicit descriptions of module facilities

Module interaction references via symbolic interface

terms.
Explicit assumptions to define constraints on the
design of all facilities and any restrictions on

facilities usage.

Abstract interfaces leading to independence of module

implementations.

Localizing design change via information hiding.

Ease of document change due to separation of concerns.

Implementation notes to record designer's ideas.

Design issues to record the history and justifications

for design choices.



ISSUES

Sensitivity to the requirements specification

and nondeterminism of the module decomposition.

Reducing the behavior-hiding module's

sensitivity to modes.

How to determine necessary facilities of each

module.

Lack of attention to module internal design.

Appropriate traceability to the requirements

specification.



IMPLEMENTATION PHASE

Coding
ITTI based pseudocode
Macro and procedure capabilities
In-line EC macrocode
Abstract data types
State Transition Event type class for

process control

Virtual hardware coding
Software extensions (PM & SU)
SYSGEN constant parameters
SYSGEN effect procedures

SYSGEN formal parameter binding



IMPLEMENTATION PHASE

SYSTEM GENERATION (SYSGEN)
Macroprocessor (EC to TC2)
Conditional assembly
Module version selection
Static process creation and scheduling
Execution of SYSGEN effect procedures
Setting of SYSGEN constant parameters
SYSGEN binding of formal parameters

Development versus production system versions



ISSUES

Efficiency of object code produced

Manual translation from pseudocode to
EC code

Methodology for deriving an efficient
process structure

Difficulty of debugging without close
source code/object code correspondence
or source code level debugging facilities

Complexity of the SYSGEN process

Configuration control of implementation

facilities and products



