

Tutorial Scope

Domain-specific Engineering[™] (DsE) *The nature of a product line process* **Reuse-driven Process Improvement[™] (PI_r)** *Instituting product line business objectives Assessing product line needs and capabilities Adopting and improving a product line approach*

Terminology

- Market: A set of customers having similar needs
- Product: A set of artifacts that represent a problem and its solution
- Product line: A set of similar products (to be) created by an organization for a market
- Product family: A unified representation of a set of similar products
- Domain: The knowledge and expertise needed to create a set of similar products

Questions to Consider

Why do organizations adopt a product line approach?

How does a product line process differ from a conventional process?

How does process improvement differ for a product line?

© 2002, PHS

PL Business Motivations

Improve productivity and product quality by focusing efforts on a set of similar products

Gain competitive advantage by being more responsive to diversity and change in customer and market needs

Topic Outline

- Domain-specific Engineering for a product line business
- PI_r
 - The adoption/improvement process
 - Assessment models
 - Product line strategy
- Future directions

Domain-specific Engineering (DsE)

A framework and discipline for the engineering and manufacture of similar products

What Makes DsE Different?

Standardizing on the most effective solutions to a class of similar problems

- Focusing exclusively on a market (customers who have similar needs)
- Achieving a consensus on how and why customers' needs differ and change
- Developing a product family and process for rapidly building customized products

The Point Being to Build Products

- Create a domain-specific infrastructure to enhance your ability to build products (*Domain Engineering*)
- Build products using a domain-specific infrastructure (*Application Engineering*)
- 2 interdependent objectives => a 2-step iterative process

Domain Engineering

Potential Benefits of DsE

- Domain knowledge and expertise become an organizational asset
- Customer needs are expressed in a standardized form and terminology
- Quality improvements in the product family improve the quality of all products
- Process standardization fosters more predictable schedules and cost estimates
- Process streamlining, based on a product family, reduces time and effort to deliver similar products

Topic Outline

- Domain-specific Engineering for a product line business
- PI_r
 - The adoption/improvement process
 - Assessment models
 - Product line strategy
- Future directions

Objectives of PI_r

- Establish a focus on a viable product line market
- Define an effective product line strategy (based on DsE)
- Guide adoption and improvement of software practices (engineering and manufacturing) appropriate to the product line

Process Improvement Terms

For a given process P:

<u>Capability</u> The range of results that are achievable with P (when P is stable)

Performance The actual results achieved in following P

Maturity

The predictability with which performance of P attains the capability of P

© 2002, PHS

Cornerstones of PI_r

- An effective model for improving process maturity {such as SEI Capability Maturity Model[®] Integration (CMMI)}
- Reuse as an enabler of improved process capability:
 - Higher productivity (more products faster)
 - Consistent or improving quality (better products)
 - Responsiveness to diverse or changing needs
- A limited organizational scope: A product line business area (whose focus on similar problems enables reuse of solutions)
- An ability to correlate investment-level to capability-level

Precursors to PI_r

- Software Engineering Institute
 - Capability Maturity Model[®] for Software (1993)
- Software Productivity Consortium
 - Reuse Adoption Guidebook (1993)
- Prosperity Heights Software (for Thomson-CSF)
 - "A Unified Approach to the CMM and RCM for RSP Adopters" (1997)
 - "Domain Assessment for RSP Adopters" (1997)

PI_r **Refinements**

- Integrate process improvement and reuse adoption efforts
- Distinguish capability improvement from maturity improvement
- Define criteria for evaluating viability of a product line orientation before commitment
- Defer product line technical choices and effort to DsE
- Focus on instituting single product lines, not organization-wide or general-purpose reuse
- Emphasize self-assessment and leadership-based action with minimal bureaucracy

Topic Outline

- Domain-specific Engineering for a product line business
- PI_r
 - The adoption/improvement process
 - Assessment models
 - Product line strategy
- Future directions

PI_r **Prerequisites**

A possible PL business focus A product concept Potential customers Awareness of PL benefits based on: Tutorials or publications Industry anecdotes PL or reuse pilot efforts Openness to process improvement efforts

Commit

- Characterize the product line opportunity
 - Products
 - Customers
 - Business challenges
- Define business objectives
- Evaluate domain viability
 - Subjective factors
 - Financial projections
- Allocate resources to institute a domain
- Monitor progress and revise commitment as circumstances change

Manage Quality

- Assess process maturity
 - Conventional criteria
 - Reuse criteria
- Identify needed improvements
- Initiate improvement actions
 - Define action plans
 - Implement actions
 - Evaluate effects

© 2002, PHS

Define Strategy

- Target an appropriate level of reuse capability
 - Business objectives
 - Risks
 - Financial projections

• Develop a product line strategy for the business

Initiate Action

- Obtain funding and organizational support
- Augment staffing
- Provide documentation and training
- Implement infrastructure
- Resolve organizational/cultural and legal/contractual issues

Topic Outline

- Domain-specific Engineering for a product line business
- PI_r
 - The adoption/improvement process
 - Assessment models
 - Product line strategy
- Future directions

Domain Viability

- Prerequisite: Preliminary domain scoping
 - Products (past, current, future)
 - Targeted customers
 - Sources of diversity and change
- Purpose: Refine business objectives to achieve viability
- Approach:
 - Evaluate viability prerequisites
 - Weigh significance of positive indicators
 - Assess risks suggested by <u>negative indicators</u>
 - Compare financial projections for current pointsolution versus 2-4 product line business strategies

Domain Viability Evaluation Criteria

Market opportunity

Are there customers for a line of similar products?

Technical expertise

Does the organization have the expertise to build envisioned products?

Business commitment

Is there a credible case for investing in this business?

© 2002, PHS

Domain Viability Market Opportunity Examples

• Prerequisites

"There are customers who need products of this type."

Positive indicators

"Customers will add or replace such products in the future because of changing needs."

• Negative indicators

"Customers have previously adapted their business practices in order to use a generalized product and would disregard or not benefit from customized products."

Domain Viability Technical Expertise Examples

• Prerequisites

"Assignable technical staff are familiar with the nature of customer needs to be addressed."

Positive indicators

"Assignable staff understand why products differ as a result of different customer needs."

Negative indicators

"Direct needs of current/future projects in producing individual products will limit availability of key staff needed for an effective product line effort."
Domain Viability

Business Commitment Examples

• Prerequisites

"Sources for domain investment exist, given a sound business case."

• Positive indicators

"The organization is already a vendor of this type of product."

• Negative indicators

"Proposed domain scoping would create an unacceptable conflict with the product or market alignments of other associated business organizations."

Domain Viability Compare Financial Projections

Baseline

- C_P: current direct cost to build a single product
- N: projected number of future products

Rough order-of-magnitude cost factors

- Organization transition $cost = C_P * 0.5$
- $-C_{DE}$: Total DE cost = $C_P * 2.0 \{?[1.0 \rightarrow 3.0]\}$
- $-C_{AE}$: Product direct cost = $C_P * 0.1 \{?[0.5 \rightarrow 0.01]\}$
- Product adjusted cost = $C_{AE} + C_{DE} / N$

Projected future cost

- without $DsE = C_P * N$

- with
$$DsE = C_P * (2.5 + N * 0.1)$$

Process Maturity

- Prerequisite:
 - Targeted domain scope
 - Process improvement method
- Purpose: Improve engineering practices for effectiveness and efficiency
- Approach:
 - Start with an effective process maturity concept
 - Extend maturity factors to have a reuse facet
 - Add reuse-directed maturity factors
- Evaluation technique: Consensus self-assessment

Process Maturity Improvement Objectives

Customer/supplier relationships Manage external interactions effectively

> **Engineering methods** *Perform technical activities properly*

Project management Work within budget and schedule constraints

Product quality and integrity Achieve quality goals for products

Organizational infrastructure *Establish effective support for common needs*

Process predictability *Reduce variation in results experienced across projects*

Process Maturity CMM KPAs Grouped by Objective

- Customer/supplier relationships (Requirements Management, Software Subcontract Management)
- Engineering methods (Software Product Engineering, Intergroup Coordination)
- **Project management** (Software Project Tracking and Oversight, Software Project Planning, Integrated Software Management, Quantitative Process Management)
- **Product quality and integrity** (Software Quality Assurance, Software Configuration Management, Peer Reviews, Software Quality Management, Defect Prevention)
- **Organizational infrastructure** (Organization Process Focus, Training Program, Technology Change Management)
- **Process predictability** (Organization Process Definition, Process Change Management)

Process Maturity Example CMM KPA Extensions

CMM KPA Goal

- SCM-3: Changes to identified software work products are controlled.
- OPD-1: A standard software process for the organization is developed and maintained.
- OPD-2: Information related to the use of the organization's standard software process by the software projects is collected, reviewed, and made available.
- PCM-1: Continuous process improvement is planned.

Reuse facet

- Reusable assets are under configuration control.
- Standard reuse processes are defined and integrated with the organization's standard software process.
- Reuse experiences from past and current projects are collected and made available.
- Plans are established to systematically address weaknesses identified in reuse technology training.

Process Maturity Objectives Added for Reuse

Product line strategy and management

Are strategy and management actions consistent with an effective product line approach?

Raw materials and assets

Do available raw materials and assets address product line needs?

Process and technology infrastructure

Do infrastructure activities support a product line effort?

<u>Process Maturity</u> Added Reuse Factors

- Product line strategy and management
 - Organizational Commitment
 - Commonality and Variability Definition
 - Costing and Pricing
- Process and technology infrastructure
 - Process Definition and Integration
 - Legal and Contractual Constraints
 - Tool support
 - Technology Innovation

- Raw materials and assets
 - Needs Identification
 - Asset Value Determination
 - Asset Quality and Verification
 - Asset Awareness, Accessibility, and Evaluation
 - Asset Reusability and Application Integrability

Process Maturity Example Reuse Goals

Organizational commitment: Management commits funding, staffing, and other resources to define, implement, and improve the organization's approach to reuse

- *Commonality and variability definition:* Commonalities and variabilities in customers' needs are identified and guide providing assets that meet differing needs
- **Costing and pricing:** Pricing and funding strategies take into account anticipated costs and benefits of following a product line approach
- Asset awareness, accessibility, and evaluation: Developers have access to assets that have been specifically provided for use in their products
- Asset quality and verification: Reusable assets are developed and verified against explicit specifications
- *Tool support:* Tools are developed or acquired and tailored to support reuse capabilities of the organization's standard processes

Reuse Capability

- Prerequisites:
 - Targeted domain scope
 - Business objectives
- Purpose: Tailor product line approach to organizational needs and objectives
- Formulation: Key factors characterize 4 levels of capability
- Outcome: Highest capability level indicated by all key factors

<u>Reuse Capability</u> **DsE Capability Levels**

Leveraged

Integrated

Domain-Market Coevolution

Products/Process Standardization

Integrated Products & Management

Opportunistic

Enhanced Project-level Reuse

Management Integration

To what degree can projects' plans be coordinated?

Needs Orientation

Should domain efforts focus on project or customer needs, and on quick or high-impact payback?

Product Integration

To what degree and at what level can products be integrated?

Stability–Optimization

To what degree can cultural stability be disturbed to achieve an optimized process?

<u>Reuse Capability</u> **Opportunistic DsE**

Theme: Increase project-level reuse for work products of a conventional process

- Application engineering
 - Autonomous, independently planned projects
 - Each focused on satisfying one customer's exact needs
 - Planning adjusted to reflect the potential for work product component reuse by engineers
- Domain engineering
 - A shared resource of problem-solving knowledge and expertise
 - Develops work product component families that have highest value to current projects

<u>Reuse Capability</u> Integrated DsE

Theme: Collaborate across projects to enable similar solutions to similar problems

- Application engineering
 - Projects coordinate planning and priorities to reduce redundant efforts
 - Use of domain capabilities preferred over custom work whenever practical
- Domain engineering
 - Support oriented to creating tailorable whole work products, focusing on well understood areas
 - Projects' joint priorities and usage of assets guide planning of work

<u>Reuse Capability</u> Leveraged DsE

Theme: Standardize products and process to reflect the needs of a targeted market

- Application engineering
 - Use domain capabilities to rapidly derive a best-fit whole product for each project's customer
 - Apply hand tailoring only to remedy critical shortcomings of a domain-derived product
- Domain engineering
 - Gives precedence to strategic market needs over divergent needs of individual projects/customers
 - Optimize the application process based on product family concepts

<u>Reuse Capability</u> Anticipating DsE

Theme: Coordinate market and domain evolution to increase synergy

- Application engineering
 - Use domain capabilities to guide a customer in defining their needs
 - Focus projects on best exploiting domain capabilities
 - Refer unsupported needs as opportunities for domain evolution
- Domain engineering
 - Creates an evolving product family that anticipates changing market needs
 - Uses process efficiency to influence market evolution

Topic Outline

- Domain-specific Engineering for a product line business
- PI_r
 - The adoption/improvement process
 - Assessment models
 - Product line strategy
- Future directions

Product Line Strategy

- Prerequisite:
 - Targeted domain scope
 - Business objectives
 - Targeted level of Reuse Capability
- Purpose: Provide a framework for instituting DsE
- Outcome: Decisions prerequisite to initiating a tailored DsE effort for a product line

PL Strategy Market/Products Focus

Identify:

- Customers
 - Current
 - Prospective
- Products
 - Legacy
 - Projected
- Sources of diversity and change
 - Customer needs
 - Technology

PL Strategy Business Model Considerations

- Domain funding/ownership?
 - R&D funds, project task orders, license fees?
 - Customer(s) funds, direct or via projects?
- Accounting/legal implications and constraints?
 - Domain funding as a capital investment?
 - Cost recovery from domain usage?
- Customer concerns:
 - Product source code rights?
 - Development environment (domain) rights?
 - Options for post-delivery product modifications?
 - Responsibility for defects?

PL Strategy **Process Model Tailoring**

Basis: DsE process definition

Tailoring factors:

Targeted level of reuse capability

Preferred management practices (after Process Maturity actions)

Preferred engineering methods

A Streamlined Application Engineering Process

PL Strategy PL Organizational Functions

Management

Customer Relationships (Marketing & Sales)

Domain

Management

Engineering Product Family Appl. Process

Project support

Application

Management

Engineering Requirements Production

Customer support

PL Strategy

Support Environment (for DE)

- Tools
 - Project management
 - Documentation
 - Configuration management
 - Software methods (design/code/test) support
 - AE process development
 - Integration test evaluation and installation support
- Infrastructure (computers, communications, data storage)
- Legacy products

PL Strategy Transition Strategy

Current Practices

Transition Actions

- Funding/staffing commitments
- Organizational support revisions

Targeted

Practices

- Tailored process documentation
- Environment development
- Training

PL Strategy Key Risk Factors of Transition

- Diversion of key managers and engineers away from directly serving customers' current needs
- Need for substantial training and reorientation of managers, marketing/sales, and engineers
- Costs of long-term financial investment in software as a capital asset
- Resistance to coordinated planning and management of projects within the product line business

Topic Outline

- Domain-specific Engineering for a product line business
- PI_r
 - The adoption/improvement process
 - Assessment models
 - Product line strategy
- Future directions

Future Directions

- Evolution of process improvement standards
 - Selective inclusion of reuse factors in process maturity
 - Statistical process control relative to a product line
- Experience with PI_r and DsE
 - Reformulated reuse factors for process maturity
 - Progressively refined and formalized assessment factors
 - Formalized derivation of tailored PL Strategies in terms of Reuse Capability factors
 - Tool support for PI_r and DsE
 - Metrics for adoption and management of a PL

For Additional Information on PI_r and DsE

Prosperity Heights Software

www.domain-specific.com

phs@domain-specific.com