
Renewing the Product Line Vision

Grady H. Campbell, Jr.
Prosperity Heights Software; Software Engineering Institute (ASP)

gradycampbell@domain-specific.com

Abstract

Twenty years ago, an effort to build a reuse-based

software generator led to the realization that a
domain-specific focus was essential to achieving
effective software reuse. This realization became the
product line vision. However, reuse was never the
primary focus of this vision but only a means to an
end: achieving the ability to rapidly produce and
evolve high-quality software. Although the spirit of this
vision guides us still, much of current product line
work assumes a formulation that is limited from the
perspective of the original vision. A look back at
neglected aspects of that vision will suggest
opportunities for greater progress. Beyond that,
consideration of an emerging "producibility" vision
will provide a broader perspective for framing future
product line efforts.

1. The Vision and its Origins

In the early 1990's, a project of the Software

Productivity Consortium created the first
comprehensive software product line methodology.
The resulting Reuse-driven Software Processes (RSP)
Guidebook [1] defined a product line as "a collection
of (existing and potential) products that address a
designated business area." This definition was
introduced to help people understand why the
traditional conception of software development as
building one-of-a-kind and one-size-fits-all products
might not in fact be the best fit to the actual need in all
cases. If an organization was going to build a set of
similar products, why did it make sense to build them
all as if they were unique as the traditional process
suggests? Many developers had long held a view that
there was substantial redundancy and reinvention in
many development efforts and that the traditional
paradigm of handcrafting software to satisfy seemingly
unique requirements obscured this and resulted in
wasted effort. Having the concept of a product line
raised the possibility that there was a need to be able to

produce distinct but similar products that could satisfy
differing or changing customer needs.

Product lines were already a familiar concept in
manufacturing and marketing and represented the
reality that distinct products are often meant to satisfy
similar needs even if built independently. RSP
introduced the concept of a product family to represent
the idea that the products of a product line ought to be
alike in their construction, differing only as needed to
satisfy differing needs (as suggested by Dijkstra [2]
and Parnas [3]). As explained by Dijkstra: "I prefer to
regard a program not so much as an isolated object, but
rather as a member of a family of 'related programs'....
We can think about related programs either as
alternative programs for the same task or as similar
programs for similar tasks." By assuming that products
would be similar, they would be expected not only to
be similar in structure and composition but also to be
built using a streamlined development process
reflecting the elimination of redundant efforts.

The RSP guidebook described its focus as "a
methodology for the construction of software
[products] as instances of a family of [products] that
have similar descriptions." The idea was that quality
customized products for a product line business could
be built much more rapidly if, as Dijkstra argued, they
were conceived of as instances of a family of similar
products. This perspective had come from experience
five years before in which an attempt to build a
general-purpose software generator had been ground
down under the burden of indefinite scope and the
resulting constant need to add new capabilities in order
to build new products [7]. The resulting observation
was that a narrow focus on the future needs of a
coherently defined business domain (as suggested by
Mark Simos) would limit the scope and hence bound
the cost of creating a viable software generator. In
addition, the knowledge and expertise needed to build
such a generator could be realistically scoped to reflect
the resources of a manageable organization. Such a
focus also promised to provide a basis for significantly
raising the level at which problems could be specified,

approximating the way that customers for such
products described their needs [8].

In the years following completion of the RSP
Guidebook, the Domain-specific Engineering (DsE)
methodology was developed to refine and extend the
RSP approach [5]. A comprehensive course, tutorials
addressing specialized methods, tools for adaptable
software, and various topical reports, all publicly
available, documented the DsE methodology for
adopting and implementing a market-focused product
line approach (Figure 1).

Figure 1. Domain-specific Engineering

What is discovered with a retrospective look at

these materials is that several aspects of the original
product line vision are not well addressed in much of
the discussion of product line concepts today. Of the
several books on software product lines written in the
last 10 years (most notably including [11], [12], and
[13]), all provide good introductions, guidance, and
foundations for a product line approach but all present
a simplified view of the product line concept by
neglecting some important elements encompassed by
the original vision. Publications concerning current
research in product lines (notably [14]) provide a good
sense of where the community is focused and what are
considered the key issues and promising avenues for
progress. A better understanding of missing aspects of
the original vision and the motivations behind them
may suggest opportunities for changes in emphasis that
will provide a faster path to achieving the potential of
the product line concept.

2. Neglected Aspects of the Vision

The product line vision was that a domain could

be conceived based on a business need, formulated as a
product family and associated production process, and
used by engineers to rapidly build and evolve
customized products for use by customers as their
needs changed. The RSP guidebook prescribed a
methodology for how to implement this vision. It
described this methodology as having four
distinguishing features:

- A focus on a domain represented as a family of
products, all being similar but differing in well-defined
ways

- Product building reduced to the resolution of
decisions that corresponded entirely to the ways in
which products could differ

- Dependence on the mechanical derivation of
tailored components from an adaptable form of
reusable assets for the construction of all work
products

- The use of model-based analyses of the structure
and composition of products as a guide to identifying
and evaluating alternatives

Although the spirit of this vision is fundamental to
product line efforts today, most approaches today are
much weaker in their capabilities than this vision
suggests. The RSP guidebook described a hierarchy of
capability that a product line process might exhibit,
essentially characterizing four canonical levels, labeled
as opportunistic, integrated, leveraged, and
anticipating. Most efforts today focus on the
opportunistic and integrated levels of capability
without apparent appreciation of the potential offered
at the higher levels.

The following discussion identifies six aspects of
the original product line vision that seem neglected
today. The objective of this characterization is not to
critique the potential value of other current efforts nor
to suggest that all of the described aspects have to be
accepted as essential. However, it should be
appreciated that these aspects were part of the original
vision and that the community may benefit from
weighing their value in pursuing future advances.

2.1. Aspect 1: A Decision Model Formulation

of Commonality and Variability

Commonality and variability is a central focus of

product line discussions. Similarly, the idea of
variation points in concrete work products as a
localized realization of variability is familiar. What is
missing is the link between these two ideas. RSP
defined the concept of a "decision model". The

decision model was a critical organizing element of
RSP. It was a canonical formalization of the
assumptions of commonality and variability upon
which a domain is formulated as a product line
business focus. The premise was that variabilities are a
higher conception that often are not localized within a
product's concrete artifacts but rather may be dispersed
across and pervade the form and content of the product
as a whole. The purpose of the decision model was to
provide an overarching framework for identifying the
sources of variability throughout a product regardless
of where within the product the implications of that
variability might be found.

The decision model was conceived to define only
the things about similar products that differ. Factors
that correspond to common features of similar products
are not explicitly represented in the decision model.
More to the point, the decision model identifies the
decisions that application engineers need customers to
make so they know which of a specified family of
products is to be built. RSP introduced the concept of
an “application model” as being a particular resolution
of decision model factors that distinguishes one
application product from all other instances of the
product family. The premise of a product family is that,
by constructing an application model that resolves the
decisions specified in the decision model by domain
engineering, the production of a specific product is
mechanical – no other information is needed to build a
particular product that is in some way distinguishable
from every other instance of the product family. By
resolving decisions differently, application engineers
have the means to create multiple products that may
satisfy a customer’s needs in different ways, reflecting
different function-cost-quality tradeoffs.

Without a decision model, the development of a
product family and associated components becomes a
bottom-up domain engineering exercise of conjecturing
all conceivable manner of detailed variability that may
or may not be of actual value to customers. The
decision model provides a controlling mechanism
through which options for customization are
constrained as justified by targeted market needs,
rather than maximized by engineers' imaginations to
the detriment of cost and schedule.

2.2. Aspect 2: Adaptable Components

The popular conception of software reuse is that

someone will create libraries of fixed components that
can then be used to rapidly compose products of any
sort. Libraries of this sort have seen some success, as
with the use of off-the-shelf commercial and free
products, when customers' and engineers have light or
malleable needs that can be adjusted to fit the

capabilities and qualities that available components
provide. When customers are more demanding, the use
of fixed assets has not been so easy or successful.
Clearly, if a single product meets a given need for
everyone, there is no need for multiple products;
however, in reality, differing needs are inherent in the
tradeoffs that businesses must make in pursuing their
varied endeavors.

The weakness of fixed components becomes
evident in practice when developers are allowed to
adapt such components to a customer’s specific needs
and then add the modified component back as a
reusable asset. The result, lacking the discipline that
comes with looking at every asset as an instance of a
family, is a proliferation of similar components whose
similarities and differences become obscured over
time. Even if the product line as a whole has well-
defined commonalities and variabilities, the
components upon which the products are built reflect
no such logic but only the arbitrary instances created to
meet past needs and little consideration of future needs
that characterize a product line. To adhere to product
line principles, products need to be built from
components that have been specifically engineered (or
reengineered) to reflect the decisions that define the
domain.

RSP proposed the use of adaptable rather than
fixed assets (Figure 2). Whereas fixed components
may be similar, that similarity is not explicit to their
representation and easily lost; conversely, an adaptable
component is a single unified representation of all the
members of a family. The idea of adaptable
components was a direct realization of the idea of
program families, that components could be conceived
as being instances of a family and that any differences
among similar components could be explained as
representing different resolutions of engineering
tradeoffs among customer needs and constraints.
Although within the framework of a product line the
adaptability of components can arise from detailed
insights about the capabilities needed, the decision
model provides a focusing mechanism for limiting the
diversity of instances actually needed as well as the
effort required to create a component with sufficient
tailorability.

a set of similar
components

a

b

c

d

e

f

g

h

i

j

kl
m

n

o

p

qs

r

t

u
v

w

(created)

(derived)

a family

(created)

(adapt)

p1 p2 ...
pn

a b
...

w

a set of similar
components

parameters
of variation

(not yet
created)

Figure 2. Two views of a component family

The adaptability of a component is represented by

an associated set of parameters of variation that control
the mechanical derivation of tailored instances of the
component family. Adaptability to specified
parameters is integral to the design and implementation
of the component family as a domain artifact. In RSP,
the relationship between the variabilities expressed in
the decision model and the adaptability parameters of
each component is an arbitrarily complex mapping:
parameters may be derived from multiple decisions and
decisions may factor in the resolution of many
different adaptable components of a product family.

2.3. Aspect 3: A Domain-Specific Process

One of several primary differences between

weaker and stronger forms of product line approach is
a willingness to depart from the traditional model of a
phased, work-product-focused software process. Like
the typical conventional point-solution process, the
application engineering process in the typical product
line approach depicts a series of activities for
requirements, design, implementation, and testing.

The RSP guidebook provided a framework for
progressively streamlining the software process but a
fundamental discontinuity occurs when the focus
changes from producing a progression of work
products to producing a product as a whole. From this
point, a work-product-focused phased process impedes
progress. Instead a whole-product application
engineering process is non-linear, eliminating the
detailed step-by-step effort to produce individual work
products and introducing the means to produce any and
all work products at any time (Figure 3).

To account for the view that the application
engineering process could take different forms, the
RSP domain engineering process included activities for
both product family engineering and process
engineering (Figure 4). Analogously, DsE defined a
domain as “the knowledge (product family) and
expertise (process) required to build a particular type
of product.”

Requirements DeliveryTestingCodingDesign

Product

knowledge

Figure 3. A non-linear software process

Product family engineering encompassed the

requirements, design, implementation, and testing both
of an architecturally integrated set of adaptable
components for all categories of work product and of
generators that application engineers could use to
compose application work products from those
components. Process engineering defined how
application engineers were to work and constructed the
corresponding mechanisms that application engineers
would be provided as their means to create and
evaluate an application model, identifying a needed
product in terms specified by the decision model and
then using the mechanisms provided by product family
engineering to generate the corresponding work
products for delivery into customer use.

Project Support

Domain
Management

Domain Definition

Product Family
Engineering

Process
Engineering

Figure 4. DsE domain engineering process

2.4. Aspect 4: Total Product Generation

In an advanced application engineering process

(Figure 5), the application product as a whole is
represented by an application model whose content is
specified by the decision model. The product consists
of a set of work products, each specifying for example
requirements, design, implementation, test materials,
management materials, or delivery materials and each
being derived from a set of adaptable components
guided by the decisions expressed in the application
model. Adaptable components are the raw material for

generating the work products comprising an
application product.

Customer Needs

Problem Analysis
& Specification

Solution Analysis
& Validation

Application Model
(Domain-specific notation)

Adaptable
Components

Product
Generation

Delivery
Support

Application Product
(work products)

Verification

Delivery & Operation Support

Figure 5. A DsE application engineering
process

In a product line context, there is no inherent need

to produce work products individually in some
arbitrary phased or "top down" order. Any work
product can be produced at any time, being as correct
and complete as the underlying application model and
enabling domain capabilities permit. It is conceivable
that for purposes of engineering or customer review
and approval that it makes sense to produce only
selected work products at a given point but this is not
dictated by the capabilities of a product line approach.
In a mature product line effort, it is imposed only if
domain engineering institutes a process in which such
selective generation is the proper approach for
application engineering.

A motivation for having this perspective is the
inherent co-dependence between a problem and its
solution(s). In practice, problems are never fully
understood nor completely communicated by
customers. Furthermore, as developers propose
solutions, customers often gain new insights into their
problems, leading them to change how they
characterize them. With a product line approach, such
changes are easily accommodated when these
correspond to changes in decisions identified in the
decision model. There is then no reason to generate
only a subset of the product’s constituent work
products. Alternatively, when a problem requires a
solution that is not possible with existing product line
capabilities, it prompts further domain engineering to
extend the decision model and product family
accordingly. This feedback from customers to
application engineers and then to domain engineers is a
principal means, along with market and technology
projections, of guiding the productive evolution of a
domain as market needs change.

A principal benefit of this perspective is that it
provides customers with multiple compatible views of
their problem and possible solutions. This enables
producing multiple candidate solutions that allow the
customer to understand the tradeoffs involved and
allows them to choose a solution that best satisfies
subjective as well as objective criteria of best fit to
their needs.

2.5. Aspect 5: Model-based Validation and

Verification

In a product line context, the concepts of

validation and verification occur in reverse order from
that of a traditional process. In the traditional process,
there is no basis for validation until a complete product
has been produced and verification is a highly
subjective and time-consuming evaluation of whether
dependent work products are consistent in content.
With the DsE model of application engineering (Figure
5 above), validation is the evaluation of the application
model as a restatement of the customer’s understanding
of the problem and needed solution. This model is
meant to allow for both static and dynamic means of
evaluation, including execution of the implied product
within a realistically simulated environment or the
application of formal methods to derived models of the
product’s properties. Analogously, verification is the
evaluation of whether the end product has been
generated consistently with the application model. Any
failure of verification reflects defects of domain
engineering, which have been seen to decrease rapidly
as the products of a domain are used and improved.

Model-based analyses are one aspect of the RSP
approach that has never been fully developed but,
being one of the four principles of RSP, it was
nevertheless viewed as an integral element. This
neglect was a continuing issue of the lack of
fundamental science and technology for the
specification, measurement, and analysis of the
properties of software behavior in a system. However,
the product line context provides a great potential for
enabling such analyses in that it leverages effort across
a set of similar products. As with other facets of a
product family, there are common properties that will
be true of all products in the family and properties that
differ across the family corresponding to the
implications of its variabilities. Analogously, adaptable
components provide a basis for the direct application
of formal methods, leveraging the associated effort
across all instances of the component that are ever
produced, with a component’s parameters of variation
providing a basis for generalizing formal properties

beyond the specifics of individual instance
components.

2.6. Aspect 6: A Systematic Adoption-

Improvement Framework

The RSP Guidebook effort was complemented by

an effort to define a Reuse Adoption method [4].
Because this method did not assume a product line
approach to reuse, it did not fully anticipate the needs
of a product line effort but it did provide some
essential insights for understanding how to adopt a
product line approach. Specifically, it defined an
adoption process that recognized and prescribed
attention to many of the challenges inherent to the
required organizational transition. It also defined a
model for evaluating an organization's maturity that
projected its readiness for instituting reuse practices.

Tailoring the Reuse Adoption method for a
product line approach resulted in a method for Reuse-
driven Process Improvement (PIr) [5]. PIr defined an
enhanced adoption-improvement process (Figure 6)
and defined four models to guide the performance of
that process:

- Domain viability, for determining an
organization’s viable product line market
focus

- Process maturity, for improving an
organization’s degree of engineering
discipline

- Process capability, for targeting an
organization’s level of manufacturing
discipline

- Product line strategy, for defining an
organization’s tailored product line approach

Commit

Define
Strategy

Initiate
Action

Perform
DsE

Manage
Quality Engineering

 Discipline
Product Line
 Market Focus

Manufacturing
 Discipline

DsE
Figure 6. PIr process

The use by Thomson-CSF (Thales) of the PIr

method was found to be broadly instructive into how a
large organization could effectively institute reuse [6].
PIr introduced several improvements over a general
reuse adoption approach:

- It defined a broader, more comprehensive
process for adoption and improvement
specifically of a product line approach by an
organization, including the continuous
refinement of that approach as its needs
change.

- In its process maturity model, it distinguished
elements of organizational maturity that are
addressed by general process improvement
methods such as the SEI's Capability Maturity
Model Integrated® from elements that are
particular to product lines.

- It introduced a more coherent model of
domain viability based on a better
understanding of the factors that determine
the success of a product line effort.

- Recognizing that product line approaches
themselves constitute a family, it created a
process capability model that reflected
relevant factors for deciding among the levels
of process capability so that an organization
could derive a product line approach tailored
to its own needs and capabilities.

- It refined the reuse strategy to be a product
line strategy reflecting the market, business,
organizational, technology, and transition
contexts that determine how the organization
should go about instituting and evolving its
product line approach.

- It defined a rudimentary economic model that
starts with an organization’s historical
measures of productivity and quality,
recognizing that an organization's ability to
produce software differs due to its maturity,
its goals, its capabilities, and the inherent
complexity differences among domains.

3. A Producibility Vision

As the science and technology of software

engineering have advanced, a new vision of
"producibility" is gaining viability. Happily, it
encompasses and expands on the product line vision,
but also takes us back to being able to reformulate the
concept of a general approach not only for software
product generation but also to encompass the totality of
systems production. As defined in a preliminary
roadmap for a program of research and transition [9],
producibility is "the ability to deliver needed capability
in a timely, cost-effective, and predictable manner."

From the roadmap, producibility has three
dimensions that suggest the capabilities that need to be
improved:

- Developer productivity (the efficiency and
effectiveness of developers in creating and
evolving a product)

- Product value (the utility and quality of each
product that results)

- Acquirer acuity (the insight and foresight that
acquirers have in delineating current and
future capabilities needed)

This restates the original motivation for the
product line concept, which was pragmatically limited
to producing a set of similar products corresponding to
the scope of a business enterprise. With this new
vision, we can encompass product lines while also
acknowledging the potential for other bases for
limiting the scope of applicability of the production
capability that results from domain engineering like
activities. This particularly applies to product families
that span business areas by providing solutions for
broadly acknowledged needs with capabilities that are
not themselves complete products but that serve as
components of other business-directed application
products. Similarly it provides a framework for the
development and evolution of products that are long-
lived and supportive of changing needs.

The producibility vision is of a capability for the
computer-aided design and manufacture (CAD/CAM)
of software-intensive systems (SiS). Taking a broad
view of the meaning of CAD/CAM in industry, CAD
is the conception, design, and analysis of a problem
and solution in model form while CAM is the
manufacture from raw and processed materials of a
product that conforms to that model. The roadmap
identifies five principles that characterize this vision:

- Model-centric (All problem-solution
information is expressed in a comprehensive
multi-faceted model of a product and its
envisioned context of use.)

- Virtualized (A system is defined by building,
pre-deploying, and validating in a software
form within a hardware/software/user virtual
environment.)

- Predictable (Software and dependent system
properties of interest are able to be accurately
predicted and mutually optimized as a product
model evolves.)

- Decision-focused (Multiple alternative
solutions are modeled, produced, and
empirically evaluated based on identified
customer and engineering decisions.)

- Evolvable (The problem-solution is
continuously evolved to create variant
products that satisfy anticipated differing or
changing needs.)

This is a broadening of the same conception upon
which the original product line vision was based, with

the enabling constraint of a focus on a family of similar
products. To realize this vision beyond the product line
context still requires significant advances in our
understanding of software as an artificial construct that
must both correctly sense and represent the world in
which it operates and also act effectively within it. It
also goes beyond a narrow conception of product lines
that focuses only on software to encompass systems
engineering and customized hardware manufacturing
as elements of a complete product that are
interdependent and based on a shared view of customer
needs and related engineering tradeoffs.

The roadmap identifies five areas of research
focus required to achieve this vision:

- Model-based development (Bridging the
conceptual gap between customers and
product developers to rapidly formulate,
build, and evaluate alternative solutions to
evolving needs)

- Predictable software attributes (Measuring,
predicting, and controlling SiS software
properties and tradeoffs)

- System virtualization (Creating virtualized
environments for realistically evaluating
solutions)

- Disciplined methods (Applying effective
methods for engineering discipline in the
development of software within systems)

- Infrastructure and emerging technology
(Exploiting changing infrastructure and
computing technology capabilities for
enhanced producibility)

For each of these five, the roadmap begins to
define goals whose attainment will provide the
technological capabilities (tools and methods) needed
to implement the producibility vision as a systematic
approach for the production of software-intensive
systems. In the interim, much of this vision can be
implemented today within a product line context.
While we may lack the generally applicable scientific
insights to apply this vision to build an arbitrary
system, the limiting assumptions that underlie a
product line offer a context in which more limited
methods are sufficient. In addition, since many of the
needed advances are relevant topics for product line
research, such implementations will gain improved
capabilities as the research challenges of producibility
are addressed.

References

[1] Reuse-driven Software Processes (RSP) Guidebook
(SPC-92019-CMC), Software Productivity Consortium, Nov
1993. <http://www.domain-specific.com/RSPgb>

[2] E.W. Dijkstra, "Notes on Structured Programming: On
Program Families", Structured Programming, Academic
Press, London, 1972, pp. 39-41.
[3] D.L. Parnas, "On the Design and Development of
Program Families", IEEE Trans. Software Eng. SE-2 (1976),
pp. 1-9.
[4] Reuse Adoption Guidebook (SPC-93051-CMC),
Software Productivity Consortium, Nov 1993.
[5] Software Product Lines Through Domain-specific
Engineering, Prosperity Heights Software, 2002.
<http://www.domain-specific.com/>
[6] M. Ezran, M. Morisio, and C. Tully, Practical Software
Reuse, Springer, 2002.
[7] G.H. Campbell, "Abstraction-Based Environments",
Software Architecture & Engineering, Inc., 1988.
<http://www.domain-specific.com/PDFfiles/ ABE-
Spectrum.pdf>
[8] G.H. Campbell, S.R. Faulk, and D.M. Weiss,
“Introduction to Synthesis”, Software Productivity
Consortium, June 1990.
[9] G. Campbell, “Software-intensive Systems
Producibility: A Vision and Roadmap (v 0.1)” (CMU/SEI-
2007-TN-017), Software Engineering Institute, 2007.
<http://www.sei.cmu.edu/publications/
documents/07.reports/07tn017.html>
[10] D.M. Weiss and C.T.R. Lai, Software Product-Line
Engineering, Addison Wesley, 1999.
[11] P. Clements and L. Northrop, Software Product Lines,
Addison Wesley, 2002.
[12] K. Pohl, G. Böckle, F. van der Linden, Software
Product Line Engineering, Springer, 2005.
[13] T. Käkölä and J.C. Dueñas, Software Product Lines,
Springer, 2006.

